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 Physical law

e Open source modelling framework based on
Universal Differential Equations (UDEs,
Rackauckas et al. 2020)
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T e Functional inversions

1. Make use of as much existing physical

knowledge as possible. 24
. | D=(C
2. Only use regressors (i.e. data-driven n -+ 2
models) for the subparts of the equation
that need to be learnt or expanded. l

Bolibar et al. (2023)

e Focused on global glacier modelling
e Multi-language l
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The differential equation / inversion is inside
the loss funcion that we try to minimize
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> min Loss(VLPS, Solver(HSS tg, t1, A))

l

ers based on observations, we find functional relations of
her variables (e.g. long-term air temperature, bed properties).
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1—glaciers

ne optimized solution is a function that captures global patterns based on observed data.

The Datasets %% This allow us to calibrate parameters based on global trends and as a function of some other observables.

e GGlaThiDa ice thickness database

e Millan et al. (2022); Ice velocity and thickness of the world’s 4
glaciers Training
e Hugonnet et al. (2021); Accelerated global glacier mass loss in

the early twenty-first century
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We can use this framework to invert/calibrate glacier rheology in
positions where we know both the ice thickness and ice surface
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Long-term air temperature (°C)

Glacier dataset
Peyto Glacier - RGI60-02.05098
Lemon Creek Glacier - RGIG0-01.01104
ﬁ
Waolverine Glacier - RGI60-01.09162 - RG160-03.04207
s W
Gulkana Glacier - RGI60-01.00570
- RGIED-04.07051
i \a

Esetuk Glacier - RGI60-01.02170
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o Efficient solvers for differential equations @SciML

e Automatic ditferentiation: In order to minimize the loss function, we
need to be able to compute gradients. Julia naturally supports auto-

matic differentiation O O\F
R —

What’s next for this research? What are your remaining questions? Qﬁﬁ

e Discretized PDE into thousands of ODEs: memory and

performance challenge
e Application with large
parametrizations of poo
of glaciers (e.g. basal s

when computing the sensitivities.
Earth datasets to discover
ly represented physical processes

iding, ice viscosity, calving)
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