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Climate Impact assessment of 
aircraft engine technology

BACKGROUND

• Aircraft emissions contribute ~3.5% of global
anthropogenic Effective Radiative Forcing (ERF).

• Around two-thirds is due to the non-CO2 emissions & their
related effects.

• Aircraft engine design trends tend to increase the non-CO2

emissions.
• The total climate impact must be considered for future

engine designs.

Aviation emissions & their associated Radiative Forcing from 1940 to 2018. [1]

This work is carried out within:
1. “Fly Green: Choices at crossroads”, NWO VENI Project 17367 (Nov. 2019- Dec. 2023)
2. “MInimum enviroNmental IMpact ultra-efficient cores for Aircraft propuLsion”, MINIMAL, GAN 

101056863, Horizon Europe, European Commission, (Sept. 2022 – Aug. 2026)  
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Ph.D. RESEARCH FOCUS
To develop a climate-propulsion model that can 

estimate the climate impact of an aircraft engine 

design, & which can be integrated within the engine 

design routine.

FUTURE WORK
• Generalized analysis
• (Future) Engine design vs climate impact →

sensitivity analysis
• Climate Response Function development
• Uncertainty analysis → quantitative 

significance
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KEY RESULT
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• Metric: Average Temperature Response over 100 
years (ATR100)

• Increasing the OPR 
reduces CO2 impact 
but leads to higher 
non-CO2 impact.

• CO2 impact reduction 
does not compensate 
non-CO2 impact (NOx

& contrails) increase 
enough. 

• SAF reduces both CO2

& nvPM emissions, 
thus the associated 
CO2 & contrail 
impacts.

• Lean-burn TAPS-II 
reduces NOx

emissions & its 
subsequent climate 
impact.

• Airbus A320 + CFM56-5B engine
• ~150 city pairs
• Cruise altitude= 10.668 km, Mach no. = 0.78

• Engine performance modelling: Gas Turbine 
Simulation Program (GSP) [2]

• Climate assessment: AirClim [3]
• In-house emission modelling

• Design parameter: Overall Pressure Ratio (OPR)
• Fuel: Jet A-1 v/s SAF HEFA (Sustainable Aviation 

Fuel; Hydrotreated Esters & Fatty Acids; Soy 
feedstock)

• Combustor: RQL (rich burn) v/s TAPS-II (lean 
burn)

• Aviation scenario: CurTec (technology freeze in 
2012)

• Background CH4 & CO2 scenario: IPCC SSP2-4.5

METHODOLOGY
a) Aircraft-engine 

design iteration

b) Aircraft performance 
(Fuel, ROCD)

c) Engine thdy. data

d) non-CO2 emissions 
(NOx, nvPM)

e) Flight network
f) H2O, nvPM emissions

g) ATRh

h)Design/operations/sc
enario changes 

Climate response sensitivity w.r.t OPR, SAF fuel, & lean combustion 

application [4-5] 
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