Robust Eco-Efficient Aircraft Routing

How to minimize the climate impact of aviation?
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¢ Research Objective

Aviation is responsible for about 3.5% of global warming [1].

Non-CO: effects such as contrails and NOyx induced Os make up
two-thirds of the global warming contribution of aviation [1, 2].
Air traffic is projected to grow by 3.6% to 3.8% annually for the

next twenty years [3, 4].

2 Uncertainties in 10 seconds

— Determine the impact of uncertainties on aviation’s mitigation potential.

RQ1 // What uncertainties exist and how do they propagate?
RQ2 /I What weather conditions and climate forcers limit the mitigation gain?

RQ3 // What limits in mitigation gain can we expect due to airspace constraints?

* Non-CO: effects depend on meteorological
conditions at cruise-level such as
temperature and relative humidity.

* Predicting these parameters is challenging
and comes with uncertainty.

* One can include uncertainties in models

Figure: ECMWF Ensemble
Weather Forecasting.

using ensemble forecasting.
* An example is the ECMWF 10-member
ensemble for global atmospheric data.

% Study Area: Borealis

About 10.000 daily flights.
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Figures: (left) Borealis flights for June 2019 based on EUROCONTROL data. (middle)
Borealis area. (right) Example for an ‘Departure’ flight from Reykjavik to Vienna.

¥ Methodology

probability based
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~ First Results
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1. Classify uncertainties into: input data, models, scientific understanding
2. Quantify uncertainties using error propagation and Monte-Carlo simulations
3. Determine discrepancy in mitigation gain

Figure: weather data and air traffic data are fed into climate services (aCCFs =
algorithmic Climate Change Functions [5], CoCIiP = Contrail Cirrus Prediction
model [6]) and a trajectory optimizer to determine the mitigation gain of climate-
and cost-optimized routes.

* Implemented an algorithm to filter air traffic data for Borealis in linear time.

* Developed a method to calculate the weighted distance flown through
climate-sensitive areas for flights and rank them.

* Implemented error propagation into aCCFs for Os and CH..
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-# What's next?

* Find out how weather patterns are linked to “big-hit” flights.
* Run a Monte-Carlo simulation to quantify the uncertainties within AirTraf.
* Visualize the mitigation potential on a ‘shaded’ Pareto front.
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Figures: (left) ‘Destination’ flight from Gdansk to Alesund. (middle) Potential contrail coverage from
EMAC simulation with flight trajectory. (right) Evaluated waypoints at 4D position of stars from middle
figure. Timestamp: June 3rd, 2019, 07:00 UTC.

BE References

[1] Lee, David S., et al. "The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018."
Atmospheric environment 244 (2021): 117834.

[2] Grewe, Volker, et al. "Feasibility of climate-optimized air traffic routing for trans-Atlantic flights."
Environmental Research Letters 12.3 (2017): 034003.

3] Airbus. (2023). Global Market Forecast 2023-2042 (tech. rep.).

4] Boeing. (2023). Commercial Market Outlook 2023-2042 (tech. rep.).

5] Yin, Feijia, et al. "Predicting the climate impact of aviation for en-route emissions: The algorithmic climate
change function submodel ACCF 1.0 of EMAC 2.53." Geoscientific Model Development 16.11 (2023):
3313-3334.

[6] U. Schumann. (2012). A contrail cirrus prediction model. Geoscientific Model Development, 5(3), 543— 580.

[List of Figures]: https://www.ecmwf.int/en/about/media-centre/focus/2017/fact-sheet-ensemble-weather-

forecasting

sesar’

JOINT UNDERTAKING

:***,; Co-funded by
SN the European Union



