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» The battery-electric system running on wind-power based electricity provides the lowest energy use and zero-emission  Evaluation of environmental impacts from technology production and end-of-life processes using Life Cycle
trains operation from the WTW perspective. Assessment (LCA) approach

« Hydrogen offers a significant reduction of GHG emissions only if produced from electrolysis using green electricity, with « Assessment of the fixed costs for both onboard technologies and stationary infrastructure required for alternative
negative effects in both energy use and emissions if produced from non-renewable sources. systems using Life Cycle Costs analysis

« Focusing on fuels such as HVO and systems with infrastructure already in place could be an instantly implementable  Investigation of policy mechanisms such as carbon taxes in facilitating the transition towards carbon-neutral railways
and cost-effective short-term solution for significant energy and GHG emissions savings. operation
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