
Only one of these is not 
a climate simulation.

Which is the “real” 
photo of Earth?

a b c

d e f

g h i

Stevens et al, 2019

To submit a guess, 
scan the QR code!

OR

1. Go to vevox.app
2. 156-136-777



Geet George (GRS) & Jing Sun (INSY)

Machine Learning
for Understanding
Climate Physics

Climate Action Flagship :

Machine Learning for Regional Climate

Stevens et al, 2019



It's very difficult to make predictions
especially about the future...

3

Opening inspired from Gettelman et al, 2022

IPCC AR6 Report



A hundred years ago, what did we do?

4

Look at historical patterns & make a statistical prediction!

Murphy & Katz, 1982 



“… may one play with a fantasy? 
Imagine a large hall like a theatre…”

- Richardson (1922)
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Measurements & monitoring

Geophysical experiments 

Global grid-based computation
Computers…
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Measurements & monitoring

Geophysical experiments 

Images adapted from : George et al, 2023, CliMA (Caltech), ICON Model (MPIM, DWD), Kotamarthi R et al, 2021, A-Train (NASA JPL), Ruisdael Observatory

Global grid-based computation

Field 
experiments Simulations
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Measurements & monitoring

Geophysical experiments 

Global grid-based computation
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Gettelman et al, 2022

The Engine of 
Climate Science



Stevens et al, 2019

Larger-domain 
simulations in 
limited-area 
models like LES

Hypercube 
ensembles of 
simulations to 
study phase-space

High-resolution 
climate models, 
e.g. DYAMOND, 
NextGEMS, etc.

Coupling 
components of 
the Earth system

Stevens et al, 2019

Hohenegger et al, 2022

Schulz et al, 2023

Jansson et al, 2023



Image credit: ESA

Increasingly sophisticated space-borne instrumentation

Growing network of surface-based observations 

Autonomous measurements on land and in ocean



Big Data 
Challenge

12

AI ?

> 100 petabytes of data

> 5 petabytes / year

10 Hz data collection

Widely different sources

Errors & inconsistencies

The 4 Vs

Reichstein et al, 2019



Climatic Research Questions in Our Flagship

Physics: Data-driven understanding of climate physics, as 
opposed to pure theory-driven

Predictions: Forecasting weather and climate across different 
scales, including how subsystems, such as ice sheet and sea
level, will respond to climate change

Patterns: Detecting and studying patterns in climate science

With ML

14-03-2024 13



When we talk about AI, what are we talking about?

Who brought AI to the center of attention?

14-03-2024 14

Artificial Intelligence
-- Alan Turing (1950)

“Computing Machinery and Intelligence ”

Even at the official opening of the academic 
year 2024-2025 at TU Delft, the theme was 
“Enter the Age of AI”.



“Enter the Age of AI” – TU Delft

Tons of different 
machine learning 

methods!

14-03-2024 15



In 1959, Arthur Samuel described ML 
as the “field of study that gives 
computers the ability to learn without 
being explicitly programmed”.

When we talk about ML, what are we talking about?

Or you may call it
Statistical Learning

14-03-2024 16



“Enter the Age of AI” – TU Delft

Tons of different 
machine learning 

methods!

Warren McCulloch & Walter Pitts

“A Logical Calculus of Ideas 
Immanent in Nervous Activity” (1943):

The first mathematical model of a
neural network.

14-03-2024 17



Milestones in ML

Support
Vector

Machine
1992

McCulloch-
Pitts

Neuron
1943

Perceptron
(Rosenblatt)

1958

Decision
Tree
1963

Feedforward
Network

1965

Long
Short
Term

Memory
1997

MNIST
database

1994

Random
Forest
1995

Convolutional
Neural

Network
1980s

Back-
propagation

1970

Bayesian
Network

1985

K-Nearest
Neighbors

1951

K-means
Clustering

1967

Cluster
Analysis

1932

Principal
Component

Analysis
1901

Boosting
1990
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Hopfield
Network

1982
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Hopfield
Network

1982



A Deep Neural Network

𝐷   : size of the training data set
𝑝("): prediction from the NN of the 𝑖$%  data point
𝑝̂("): desired output of the 𝑖$%  data point

𝐿 =
1
𝐷%
!"#

$

(𝑝(!) − 𝑝̂(!))	'

Input 
𝑥, 𝑧, 𝑡 Loss calculation

Initial 𝑊, 𝑏

Update 𝑊, 𝑏

Forward propagation

Backward propagation

Prediction 𝑝

Target 𝑝̂
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Computation Limitation…

Hopfield
Network

1982



Milestones in ML

Support
Vector

Machine
1992

McCulloch-
Pitts

Neuron
1943

Perceptron
(Rosenblatt)

1958

Decision
Tree
1963

Feedforward
Network

1965

Long
Short
Term

Memory
1997

MNIST
database

1994

Random
Forest
1995

Convolutional
Neural

Network
1980s

Back-
propagation

1970
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AlexNet
(winner of
ImageNet

LSVRC)
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Bayesian
Network

1985

K-Nearest
Neighbors

1951

K-means
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1967

Hopfield
Network

1982

“Enter the Age of Deep Learning!”
(or AI Boom!)

Cluster
Analysis

1932

Principal
Component

Analysis
1901

Boosting
1990
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Milestones in DL ∈ML

ImageNet
(> 14 million

images)
2009

AlexNet
(winner of
ImageNet

LSVRC)
2012

FCN (Fully
Convolutional

Network)
2014

ResNet
2016

Transformer
2017

U-Net
2015

VGG
2014

GAN
(Generative
Adversarial
Networks)

2014

GPT-3.5 
DALL-E2

2022

DenseNet
2017

Sora
2024

Diffusion
Model
2015

Stable
Diffusion

2022

GPT-2
2019

GPT-4 
DALL-E3

2023
DALL-E

2021
GPT-1
2018

GPT-3
2020

The real party…

14-03-2024 23

https://stability.ai/

https://openai.com/
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“Opportunities and Risks”
“Though foundation models are based on standard deep learning and 
transfer learning, their scale results in new emergent capabilities, and 
their effectiveness across so many tasks incentivizes homogenization. 
Homogenization provides powerful leverage but demands caution, as the 
defects of the foundation model are inherited by all the adapted models 
downstream. Despite the impending widespread deployment of 
foundation models, we currently lack a clear understanding of how they 
work, when they fail, and what they are even capable of due to their 
emergent properties. To tackle these questions, we believe much of the 
critical research on foundation models will require deep 
interdisciplinary collaboration commensurate with their fundamentally 
sociotechnical nature.”

Greater Power (of the AI),
Greater Responsibility (for the AI researchers).

114 AI researchers

Bommasani, Rishi, et al., 2021. On the opportunities and risks of foundation 
models. arXiv preprint arXiv:2108.07258.  



Where is the Solution to My Task!

This is like teaching someone Chinese to cook 
Indian food; 

you have 1,000 successful recipes from experts’
experiences beforehand, 

but you never foresee what you will actually serve 
at the table in the end.

You do get lucky in some cases
where ”transplanting” simply works!

https://www.amazon.nl/India-Cookbook-Pushpesh-Pant/dp/0714859028



What are the correct connections based
on your intuition?
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Give your answer:

Scan the QR Code!

OR

1. Go to vevox.app
2. 156-136-777



1

2

3

Short-term forecasting (predicting the weather for a short 
period, usually up to 48 hours ahead)

Statistical downscaling (from a larger-scale model to a 
smaller-scale; from a coarse resolution to a refined resolution)

Classification and detection of extreme weather patterns on
climate simulation data.

A

B

C

Right panels: geoscientific 
problems to which the same 
AI techniques can be applied.

Left panels: AI tasks 
in computer vision.
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Scan the QR Code!

OR

1. Go to vevox.app
2. 156-136-777



1

2

3

Short-term forecasting (predicting the weather for a short 
period, usually up to 48 hours ahead)

Statistical downscaling (from a larger-scale model to a 
smaller-scale; from a coarse resolution to a refined resolution)

Classification and detection of extreme weather patterns on
climate simulation data.

A

B

C

Right panels: geoscientific 
problems to which the same 
AI techniques can be applied.

Left panels: AI tasks 
in computer vision.
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Reichstein, M., Camps-Valls, G., 
Stevens, B., Jung, M., Denzler, 
J., Carvalhais, N. and Prabhat, 
F., 2019. Deep learning and 
process understanding for data-
driven Earth system science.
Nature, 566(7743), pp.195-204.



Case Studies

Physics

Predictions

Patterns

With ML

Statistical downscaling (from a larger-scale model to a smaller-scale; from a 
coarse resolution to a refined resolution)

Short-term forecasting (predicting the weather for a short period, usually up 
to 48 hours ahead)

Classification and detection of extreme weather patterns on climate
simulation data.
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Recent developments in AI-Climate
“Data”-driven weather forecasts (early work by Düben & Bauer, 2018 and Weyn et al, 2019)

Lam et al, 2023

Similar approaches, 
differing AI strategies

Fourcastnet (NVIDIA), 
FuXi (Fudan Uni), 
PanguWeather (Huawei), 
Keisler (2022)

Graphcast (Google), 
Lam et al, 2023



A hundred years ago, what did we do?
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Look at historical patterns & make a statistical prediction!

Murphy & Katz, 1982 



Recent developments in AI-Climate
“Data”-driven weather forecasts (early work by Düben & Bauer, 2018 and Weyn et al, 2019)

Lam et al, 2023

Similar approaches, 
differing AI strategies

Fourcastnet (NVIDIA), 
FuXi (Fudan Uni), 
PanguWeather (Huawei), 
Keisler (2022)

Graphcast (Google), 
Lam et al, 2023



Case Studies

Physics

Predictions

Patterns

With ML

Statistical downscaling (from a larger-scale model to a smaller-scale; from a 
coarse resolution to a refined resolution)

Short-term forecasting (predicting the weather for a short period, usually up 
to 48 hours ahead)

Classification and detection of extreme weather patterns on climate
simulation data.
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Detect Cloud Organization Patterns
Patterns

Rasp et al, 2020, Stevens et al, 2019, Schulz et al, 2021 36

Object detection: RetinaNet
Segmentation: UNet



Detect Cloud Organization Patterns

Bony et al, 2020, Schulz et al, 2021 37

Patterns

Radiative effects of these patterns Distinguishing physics of these patterns



Downscaling: Global to Regional Climate Model

van der Meer, Marijn, Sophie de Roda Husman, and Stef Lhermitte. "Deep learning regional climate model emulators: A comparison of two 
downscaling training frameworks." JAMES 15.6 (2023): e2022MS003593.

Physics

38

Data-driven emulator instead of a dynamical model

Surface Mass Balance over Antarctica peninsula
U-Net architecture: Two different training strategies

Perfect (blind to global) and Imperfect (can see global-regional coupling)

Near-instantaneous predictions instead of several weeks on a supercomputer!



Predictions

39

Short-term weather forecasting (Nowcasting)
Intra-day solar forecast with deep learning – Enhancing solar energy

A. Carpentieri, D. Folinia, J. Leinonen, and A. Meyer. ”Extended intraday solar forecast horizons with deep generative models” submitted, 
preprint on arXiv

Clear-sky irradiances from 
satellite data

Deterministic & 
probabilistic for large-scale 
vs noisy dynamics

Performance & accuracy!



Predictions

40

Visions of the Climate Action Flagship

Improving regional climate projections

Downscaling global models

Uncertainties in circulation patterns

We showcase a few projects and ideas…



AI for Data Enhancement 
Understanding clouds-circulations coupling

Circulations in measurements Circulations in models

Uncertainties in understanding of circulations

Satellites can provide large data to help

Data-gaps & coarse-resolution

Gap-filling & increasing SnR with deep learning

George et al, 2023, Janssens et al, 2023



AI for Physics in Data
Physical interpretations from raw data

Synergistic use of observations to understand physical processes

Assumptions hidden in retrievals of physical quantities

AI works with raw, native data: Look for stable hypervolumes in raw-data space

Image courtesy: Ruisdael



Sea Level + ML
Riccardo Riva (Sea Level Change) and
Jing Sun (ML) are collaboratively
supervising a PhD project focusing
the following research questions:
• Can we quantify mass changes in 

freshwater reservoirs from satellite 
altimetry observations over the 
oceans?

• How can we use machine learning 
techniques to detect slow and large-
scale signals due to geophysical 
processes?

14-03-2024 43

In-Theme
Collaboration

Riva, R., 2022. A novel reconstruction of sea level sources from 
satellite altimetry. NWO. Use of space infrastructure for Earth 
observation and planetary research (GO).



Larger Model! Bigger Data!

THE MACHINE LEARNING

DEEP LEARNING

Out of the house! It
should be Machine
AND Deep Learning!
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Challenges in AI

• Interpretability

• Physics Consistency

• Uncertainty Quantification

• Computational Efficiency
Electricity Consumption: ChatGPT = 17,000 US household users 

-- THE NEW YORKER
https://www.newyorker.com/news/daily-comment/the-obscene-energy-demands-of-ai
The comparison was based on ChatGPT responding to 200 million requests per day, and 
the average U.S. household consuming 29 kilowatt-hours daily.

A poor Netflix recommendation ruins a movie night; 

a poor climate decision-making dims the future’s light.

Climate is Climate!

Trustworthy AI
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https://www.newyorker.com/news/daily-comment/the-obscene-energy-demands-of-ai
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Computation

> 1.5 years

Image Courtesy: LUMI

1 second



Computation
Image Courtesy: LUMI

Data

Traditional mechanical
computation

Machine
computation

Traditional statistical
learning

Deep 
learning

~70 years ago…

Today! 



Bedankt voor uw aandacht!
Thanks for your attention!

Dr. Geet George
G.George@tudelft.nl
Office 2.22, Building 23
Department of Geoscience and Remote Sensing

Dr. Jing Sun 
Jing.Sun@tudelft.nl
Office 6.E.100, Building 28
Department of Intelligent Systems
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