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1t's very difficult to make predictions
especially about the future...

Global surface temperature change relative to 1850-1900
IPCC AR6 Report

3
Opening inspired from Gettelman et al, 2022
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A hundred years ago, what did we do?

Look at historical patterns & make a statistical prediction!
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“... may one play with a fantasy?
Imagine a large hall like a theatre...”

- Richardson (1922)



Measurements & monitoring

Computers...
Global grid-based computation

© Stephen Conlin 1986



CALIPSO

Vertical exchang
between levels

Horizontal exchangt
between columns

Field
experiments

Images adapted from : George et al, 2023, CliMA (Caltech), ICON Model (MPIM, DWD), Kotamarthi R et al, 2021, A-Train (NASA JPL), Ruisdael Observatory © Stephen Conlin 1986



Measurements & monitoring

Global grid-based computation

© Stephen Conlin 1986



The Engine of ﬁ
Climate Science

Observations
Signal (voltage)

Data cube or “twin”

Prediction Radiance

“Applications”

Model

Empirical
models/training

Assimilation | Retrieval
Gettelman et al, 2022



Larger-domain
simulations in
limited-area
models like LES

Schulz et al, 2023

High-resolution
climate models,
e.g. DYAMOND,
NextGEMS, etc.

Stevens et al, 2019

Hypercube
ensembles of
simulations to
study phase-space

Jansson et al, 2023

Coupling
components of
the Earth system

Hohenegger et al, 2022

Stevens et al, 2019




Increasingly sophisticated space-borne instrumentation

Growing network of surface-based observations

- "l \
A g
\

Autonomous measurements on land and in ocean
mage credit: ESA



Blg Data > 100 petabytes of data
Challenge

> 5 petabytes / year

The 4 VS 10 Hz data collection

Al

Widely different sources

Errors & inconsistencies

Reichstein et al, 2019



Climatic Research Questions in Our Flagship

%
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~ Patterns: Detecting and studying patterns in climate science

Physics: Data-driven understanding of climate physics, as
opposed to pure theory-driven

Predictions: Forecasting weather and climate across different

-~ scales, including how subsystems, such as ice sheet and sea
level, will respond to climate change

13



When we talk about Al, what are we talking about?

Artificial Intelligence ))/
-- Alan Turing (1950)

“Computing Machinery and Intelligence ” statistics

Even at the official opening of the academic
year 2024-2025 at TU Delft, the theme was

“Enter the Age of AI". )/ /’/ \

@ Artificial intellige;ce

=

Machine Learning

%
TUDelft

14-03-2024




“Enter the Age of Al” — TU Delft

Tons of different
machine learning
methods!

%
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When we talk about ML, what are we talking about?

In 1959, Arthur Samuel described ML ))/
as the “field of study that gives
computers the ability to learn without statistics

being explicitly programmed”.

S i

. Oryoumay callit . —
. Statistical Learning | | yachine Learning

G

%
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14-03-2024




“Enter the Age of Al” — TU Delft

ART\F\C\ A\_ \N.‘ Warren McCulloch & Walter Pitts

“A Logical Calculus of Ideas
Immanent in Nervous Activity” ( ):

The first mathematical model of a
neural network.

I
Ty b N

y€{0,1}
T3—

Tn € {() 1}

%
TU Delft .

Tons of different
machine learning
methods!

LEARNING




Milestones in ML

Convolutional Support
Cluster K-Nearest Decision K-means Neural Bayesian Vector Random
Analysis Neighbors Tree Clustering Network Network Machine Forest
1932 1951 1963 1967 1980s 1985 1992 1995
Principal | McCulloch- | Perceptron Feedforward Back- Hopfield Boosting MNIST Long
Component Pitts (Rosenblatt)  Network propagation Network 1990 database Short
Analysis Neuron 1958 1965 1970 1982 1994 Term
1901 1943 Memory

1997

]
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Milestones in ML

Convolutional Support
Cluster K-Nearest Decision K-means Neural Bayesian Vector Random
Analysis Neighbors Tree Clustering Network Network Machine Forest
1932 1951 1963 1967 1980s 1985 1992 1995
Principal McCulloch- Perceptron | Feedforward Back- Hopfield Boosting MNIST Long
Component  Pitts (Rosenblatt) | Network propagation Network 1990 database Short
Analysis Neuron 1958 1965 1970 1982 1994 Term
1901 1943 Memory

1997

]
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A Deep Neural Network

Input
X,z t

%
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[ Forward propagation }

p = fun(x,z,t; W, b)

Alll = glLJ (WlLJ * AlL-1 4 b[L])

Al Alll Al2] Al3] .. AlL-1]
= gUIWIT 4 Al] 4 plily = gl (Wi« Al 4 b)) = gle) (W Al 4 pBT) = gl (W1 4 A2 4 i1l

Initial W, b }

y

Prediction p

A 4

l Loss calculation ]<—[ Target p ]

Update W, b }*

Backward propagation

D
1 . .
L:_E:m_«oz
D_l(p pt)
l:

D :size of the training data set
p®: prediction from the NN of the it" data point
p®D: desired output of the it" data point



Milestones in ML

Convolutional Support
Cluster K-Nearest Decision K-means Neural Bayesian Vector Random
Analysis Neighbors Tree Clustering Network Network Machine Forest
1932 1951 1963 1967 1980s 1985 1992 1995
Principal McCulloch- Perceptron Feedforward Back- Hopfield Boosting MNIST Long
Component  Pitts (Rosenblatt)  Network propagation Network 1990 database Short
Analysis Neuron 1958 1965 1970 1982 1994 Term
1901 1943 Memory

1997

[Computation Limitation...]
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Milestones in ML

Convolutional Support ImageNet
Cluster K-Nearest Decision K-means Neural Bayesian Vector Random (> 14 million
Analysis Neighbors Tree Clustering Network Network Machine Forest images)

1932 1951 1963 1967 1980s 1985 1992 1995 2009
Principal McCulloch- Perceptron Feedforward Back- Hopfield Boosting MNIST Long AlexNet
Component  Pitts (Rosenblatt)  Network propagation Network 1990 database Short (winner of
Analysis Neuron 1958 1965 1970 1982 1994 Term ImageNet
1901 1943 Memory LSVRC)

1997 2012
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Milestones in DL € ML

VGG
2014 EA
ImageNet FCN (Fully ,
(>14 million Convolutional P .
images) Network) U-Net -H m’H’
2009 2014 2015 ¢ f
b i

AlexNet Diffusion ResNet
(winner of Model 2016
ImageNet G GAN _ 2015 x

LSVRC enerative vaght ayer |

2012 ) Adversarial Fx) S
Networks)
2014 F(x)+x
NeurlPS

Generative Adversarial Nets GvF

by | Goodfellow - 2014 - Cited by 65246 — We propose
generative models via adversarial nets, in which we si

%
TUDelft

Deep Residual Learning

https://papers.nips.cc » paper » 5423-generative-ad Figure 2. Residual learning: a building block.

The Computer Vision Foundation
https://www.cv-foundation.org » papers » He_De..

NeurlPS
https://papers.nips.cc » paper » 7181-attention-is-all-yo...

Attention is All you Need

by A Vaswani - 2017 - Cited by 111587 — We propose a
based solely onan attention mechanism, dispensing witt

Transformer
2017

https://openai.com/

@ OpenAl

GPT-3.5 GPT-4
GPT-1 GPT-2 GPT-3 DALL-E DALL-E2 DALL-E3
2018 2019 2020 2021 2022 2023

output
segmentation
map

Ldbg

=»conv 3x3, ReLU
copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

DenseNet Stable
2017 Diffusion
2022

https://stability.ai/

identity

for Image Recognition

by K He - 2016 - Cited by 208219 — Deeper neural networks are mor

present a residual learning framework to ease the training of networl
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“Opportunities and Risks”

“Though foundation models are based on standard deep learning and
transfer learning, their scale results in new emergent capabilities, and
their effectiveness across so many tasks incentivizes homogenization.
Homogenization provides powerful leverage but demands caution, as the
defects of the foundation model are inherited by all the adapted models
downstream. Despite the impending widespread deployment of
foundation models, we currently lack a clear understanding of how they
work, when they fail, and what they are even capable of due to their
emergent properties. To tackle these questions, we believe much of the
critical research on foundation models will require deep
interdisciplinary collaboration commensurate with their fundamentally
sociotechnical nature.”

‘Greater Power (of the Al),
Greater Responsibility (for the Al researchers).

Bommasani, Rishi, et al., 2021. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258.
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Stanford University
Human-Centered
Artificial Intelligence

Center for
Research on
Foundation
Models

HIA

On the Opportunities and Risks of Foundation
Models

| Download the report.

114 Al researchers

Authors: Rishi Bommasani*, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri
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Thomas, Florian Trameér, Rose E. Wang, William Wang , Bohan Wu, Jiajun Wu, Yuhuai Wu,

Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang,

Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang*




Where is the Solution to My Task!

This i1s like teaching someone Chinese to cook
Indian food;

you have 1,000 successful recipes from experts’
experiences beforehand,

but you never foresee what you will actually serve
at the table in the end.

iYou do get lucky in some cases
‘where "transplanting” simply works!

https://www.amazon.nl/India-Cookbook-Pushpesh-Pant/dp/0714859028
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PRODUCE OF INDIA

-l

Written by:
PUSHPESH PANT

THE ONLY BOOK ON INDIAN FODD YOU'LL EVER NEED

1000 RECIPES

WWW.PHAIDON.COM

. |
Lo i

\

\

REAP #: 1-0-06-205




What are

%
TUDelft

on your 1ntuition?

Give your answer:

E Scan the QR Code!

OR

1. Go to vevox.app
2.156-136-777

based
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Left panels: Al tasks
in computer vision.

%
TUDel

Machine learning tasks

1 Object classification and localization

Cat: 0.082 =@
e -

<

2 Super-resolution and fusion
8x8 32x32 Ground
input samples truth

Predict future visual
representation

¢ (X)
¢ (xl‘+1)

Earth science tasks

Statistical downscaling (from a larger-scale model to a

smaller-scale; from a coarse resolution to a refined resolution)

A

Short-term forecasting (predicting the weather for a short

B

Classification and detection of extreme weather patterns on

C

] Eos
RN
e
s PE < T 17
b | 3 "
ke J
— "H
| & |
R &l L TN o
NSNS TAAT i 1 N

period, usually up to 48 hours ahead)

climate simulation data.

Right panels: geoscientific
problems to which the same
Al techniques can be applied.

Scan the QR Code!

OR

1. Go to vevox.app
2.156-136-777
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Machine learning tasks Earth science tasks

Left panels: Al tasks Right panels: geoscientific
in computer vision. Bliick cantifoclionaniiooiieation Statistical downscaling (from a larger-scale model to a P"Oble“'!s to which the same
1 : smaller-scale; from a coarse resolution to a refined resolution) | Al techniques can be applied.

il L 1

7T oM

Nl ]
R LN

b, g i i 1 i N

2 Super-resolution and fusion

Short-term forecasting (predicting the weather for a short
period, usually up to 48 hours ahead)

8x8 32 x32 Ground
input samples truth

\J

Classification and detection of extreme weather patterns on

climate simulation data. Reichstein, M., Camps-Valls, G.,

Stevens, B., Jung, M., Denzler,
J., Carvalhais, N. and Prabhat,
F., 2019. Deep learning and
process understanding for data-
driven Earth system science.
Nature, 566(7743), pp.195-204.

Predict future visual
representation

]
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Classification and detection of extreme weather patterns on climate

L]
‘ a S e St' l d I e S a Object classification and localization simulation data.

With ML
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<

7~ Patterns

b Super-resolution and fusion Statistical downscaling (from a larger-scale model to a smaller-scale; from a

coarse resolution to a refined resolution)
8x8 32 %32 Ground " 1 NN
input samples truth i ) s “~ A
‘ M Ta=2h K%
Physics T s
» N, il 7
1‘ \.J 3
\Y— (J >
i -
N A
N N\NTAAT L A
c Video prediction Short-term forecasting (predicting the weather for a short period, usually up

X, Xici to 48 hours ahead)

>
>

Predictions

.

Predict future visual
representation

X

¢ (Xt.1)
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Recent developments in Al-Climate

“Data”-driven weather forecasts (early work by Diiben & Bauer, 2018 and Weyn et al, 2019)

A skill (RMSE): z500 d) Encoder ] e) Processor f) Decoder - Graphcast (G Oogle),
| | e == - —==| Lametal, 2023
e S TSI ’
[0, ! '
6004 | 2 ! .
e Similar approaches,
o i . . .
oo differing Al strategies
300"
200 REs Fourcastnet (NVIDIA),
100 - i . .
N | —— GraphCast FuXi (Fudan Uni),

1234567é€|91|0
Lead time (days)

PanguWeather (Huawei),
Keisler (2022)
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Lam et al, 2023



A hundred years ago, what did we do?

Look at historical patterns & make a statistical prediction!
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Recent developments in Al-Climate

“Data”-driven weather forecasts (early work by Diiben & Bauer, 2018 and Weyn et al, 2019)

A skill (RMSE): z500 d) Encoder _ e) Processor f) Decoder - Graphcast (G Oogle),
_ | . —— ==~ —==| Llametal, 2023
g Z B2 S ’
= -JG_JJ : 4 g
Ko i
6001 | 2 i .
. Similar approaches,
E 5004 | 2 ! dﬁ . Al .
£ oo | ITrering Al strategies
0 i
= 3004 Y
200 - ' . Fourcastnet (NVIDIA),
100 - i . .
’ i P FuXi (Fudan Uni),

1 2 3 4 5 6 7 8 9 10
Lead time (days)

PanguWeather (Huawei),
Keisler (2022)
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Classification and detection of extreme weather patterns on climate

L]
‘ a S e St' l d I e S a Object classification and localization simulation data.

With ML
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7~ Patterns

b Super-resolution and fusion Statistical downscaling (from a larger-scale model to a smaller-scale; from a

coarse resolution to a refined resolution)
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Detect Cloud Organization Patterns

Sugar
Dusting of very fine clouds, little
evidence of self-organization

€——> W) 00§

Flower

Large-scale stratiform cloud
features appearing in bouquets,
well separated from each other

Object detection: RetinaNet
Segmentation: UNet

%
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Humans

Fish

Large-scale skeletal networks of
clouds separated from other
cloud forms

Gravel

Meso-beta lines or arcs defining
randomly interacting cells with
intermediate granularity

Rasp et al, 2020, Stevens et al, 2019, Schulz et al, 2021
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Detect Cloud Organization Patterns
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Downscaling: Global to Regional Climate Model

Data-driven emulator instead of a dynamical model

Mean SMB over whole Antarctica

Mean SMB over target domain

| | o
a N o
o [$,]
SMB [mm w.e./day]

|
b
3

Imperfect model framework

GCM
ACCESS-1.3, 1.2°, CMIP5
2090-2100, RCP85

Perfect model framework

Surface Mass Balance over Antarctica peninsula

U-Net architecture: Two different training strategies

X;:2D input P -
W 32320 F; or Fp : RCM-emulator
- ) 64
Bl s#
NW PR o
AR l:
!‘; 256 26
! i | ot [:
QP sp { .
-> . ‘ﬂ . s st2 st
s ‘_] _'l
[ | 4 104 1024 04+
swp 1T -, - I d
N o 10wt
. ‘3‘ NN
3
| ] g\ \ »
Z;: 1D input Fully dense NN
[t,1,1,C)

Perfect (blind to global) and Imperfect (can see global-regional coupling)

Near-instantaneous predictions instead of several weeks on a supercomputer!
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van der Meer, Marijn, Sophie de Roda Husman, and Stef Lhermitte. "Deep learning regional climate model emulators: A comparison of two
downscaling training frameworks." JAMES 15.6 (2023): e2022MS003593.
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Short-term weather forecasting (Nowcasting)

Intra-day solar forecast with deep learning — Enhancing solar energy

Clear-sky irradiances from
satellite data

Deterministic &
probabilistic for large-scale
vs noisy dynamics

Performance & accuracy!

TU D If A. Carpentieri, D. Folinia, J. Leinonen, and A. Meyer. “Extended intraday solar forecast horizons with deep generative models” submitted,
e t preprint on arXiv 39



Visions of the Climate Action Flagship

Flagship project

Machine Learning for Regional Climate

Climate models are the primary tools used for generating projections of climate change under different future socio- economic
scenarios and provide key input for regional decision making for a future climate resilient society. However, due to the large
range of spatial and temporal scales and huge number of processes being modelled, these climate models are extremely
computationally expensive to run, analyze and interpret using traditional tools and methods. Therefore, there is great interest in
how machine learning (ML) might help to improve regional climate projections, especially with novel ML methodologies that are
interpretable, show physical consistency, allow assimilation of observations and models across different scales, and that can
handle complex and uncertain data. On the application side, these ML techniques should contribute potentially to the
improvement of regional projections for the Dutch delta, where downscaling of global circulation models and uncertainties in
circulation patterns are some of the main challenges.

Flagship team

Geet George
Angela Meyer
Franziska Glassmeier
Riccardo Riva

Pier Siebesma

Marcel Reinders
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Improving regional climate projections

Downscaling global models

Uncertainties in circulation patterns

We showcase a few projects and ideas...
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Al for Data Enhancement
Understanding clouds-circulations coupling

Circulations in measurements Circulations in models
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Al for Physics in Data
Physical interpretations from raw data

Synergistic use of observations to understand physical processes

Assumptions hidden in retrievals of physical quantities

Al works with raw, native data: Look for stable hypervolumes in raw-data space

]
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Sea Level + ML

Riccardo Riva (Sea Level Change) and
Jing Sun (VL) are collaboratively
supervising a PhD project focusing
the following research questions:

« Can we quantify mass changes in
freshwater reservoirs from satellite
altimetry observations over the

oceans?

« How can we use machine learning
techniques to detect slow and large-
scale signals due to geophysical
processes?

I U D Ift Riva, R., 2022. A novel reconstruction of sea level sources from
e satellite altimetry. NWO. Use of space infrastructure for Earth

observation and planetary research (GO).

Flagship project

Regional Sea Level Rise

Sea level rise is one of the main effects of climate change that the Netherlands faces. While coastal engineers and
policymakers need accurate regional sea level projections, our physical understanding of how the circulation in deep oceans
impacts sea level in shallow seas like the North Sea, and hence our ability to model this, is still limited. We will address this
issue by studying the connections between sea level change on ocean basin scales and coastal scales, as well as the
underlying dynamical processes in the ocean driving them, for present-day and for future climates. Possible approaches include
the development and application of high-resolution numerical models and sophisticated analyses of observations.

In-Theme
Collaboration

Flagship team

Caroline Katsman
Riccardo Riva

Flagship project

Machine Learning for Regional Climate

Climate models are the primary tools used for generating projections of climate change under different future socio- economic
scenarios and provide key input for regional decision making for a future climate resilient society. However, due to the large
range of spatial and temporal scales and huge number of processes being modelled, these climate models are extremely
computationally expensive to run, analyze and interpret using traditional tools and methods. Therefore, there is great interest in
how machine learning (ML) might help to improve regional climate projections, especially with novel ML methodologies that are
interpretable, show physical consistency, allow assimilation of observations and models across different scales, and that can
handle complex and uncertain data. On the application side, these ML techniques should contribute potentially to the
improvement of regional projections for the Dutch delta, where downscaling of global circulation models and uncertainties in
circulation patterns are some of the main challenges.

Flagship team

Geet George
Angela Meyer
Franziska Glassmeier
Riccardo Riva
Pier Siebesma

Marcel Reinders




Larger Model! Bigger Data!
DEEP LEARNING

5 EXCUSE
FOR LEGITII"?ATELY SLACKING OFF:

“MY MODEL 15 TRAINING,"

Out of the house! It
should be Machine
AND Deep Learning!

HEY! GETBACK Y
T0 WORK!

TRAINING> W  THE MACHINE LEARNING

% ' .
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Challenges in Al

____________________________________________________________________________

* Interpretability . Apoor Netflix recommendation ruins a movie night;

_ _ . a poor climate decision-making dims the future’s light.i
 Physics Consistency

« Uncertainty Quantification @

« Computational Efficiency

Electricity Consumption: ChatGPT = 17,000 US household users

-- THE NEW YORKER
https://www.newyorker.com/news/daily-comment/the-obscene-energy-demands-of-ai
The comparison was based on ChatGPT responding to 200 million requests per day, and
the average U.S. household consuming 29 kilowatt-hours daily.

]
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https://www.newyorker.com/news/daily-comment/the-obscene-energy-demands-of-ai

Computation

Image Courtesy: LUMI

© Stephen Conlin 1986



Traditional mechanical ComputatiOﬂ Machine
comp ta i‘on ~70 years ago.... computation

Traditional statistical Data Deep
learning Today! learning




Bedankt voor uw aandacht!
Thanks for your attention!

Dr. Geet George

G.George@tudelft.nl

Office 2.22, Building 23

Department of Geoscience and Remote Sensing
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Dr. Jing Sun

Jing.Sun@tudelft.nl

Office 6.E.100, Building 28
Department of Intelligent Systems

14-03-2024
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