

An Industrial Perspective on the Energy Challenges of Today

James Maughan Senior Executive and General Manager Cores and Castings GE Power

Meet The Energy Leaders TU Delft November 17, 2017

An item of interest from reading the news on the way over

Nelson Bryant (USA) receiving from André Duijghuisen (NL) the knife he lost when parachuting into the Netherlands on Sept 17, 1944.

Agenda

• GE's role in power generation

- Is the future like the past in power generation?
- Two awesome power technologies
- Fossil fuels vs renewable energy
- What choice would you make?

GE Power

GE Power – equipment for any fuel, any region, any need

What is the future of Power Generation?

How did Aviation thinks its future would change in 50 yrs?

Power generation orders in the last 50 years

Two awesome technologies:

1. Gas Turbines

GE 9HA Gas Turbine

Gas Turbine Combined Cycle for Power Generation

11

THE HEART OF A COMBINED CYCLE POWER PLANT IS THE GAS TURBINE

- Low installation cost
- Low operating cost
- Natural gas fired
- Cleaner burning
- From 5 to 600 MW
- Highly efficient
- Starts quickly
- Follows loads easily

How do you ship something that weighs 800 tons?

© 2017 General Electric Company. Proprietary. All Rights Reserved.

World's Most Efficient Power Plant

62.22%

EDF Bouchain in France GE 9HA.01, 605-MW

© 2017 General Electric Company. Proprietary. All Rights Reserved.

Turbine blades

- key to high performance
- cast from high-temperature super alloys
- complex internal passages for cooling flow
 - created by ceramic core inserts during casting

GE Cores and Castings: State of the Art facility for the design and development of gas turbine cores and blades

GE Plant, Bldg 66, Schenectady, NY

Wax in injected around the 3D advanced core in the exact shape of the blade and wax patterns are assembled for shelling

Wax trees are dipped in multiple layers of ceramic slurry

Multiple layers make a complete shell, and the internal wax is melted and removed.

The shell is filled in a vacuum furnace with molten alloy that solidifies into a single crystal

Removing the ceramic shell and leaching out the internal core reveals the gas turbine blade within

A CT scan shows the detail of the complex internal cooling passages

Thumbnail video of 7HA casting - root to tip

An awesome piece of machinery

Even better, efficient gas turbines are replacing coal for power generation, in the US and elsewhere...

Figure 7.2 Electricity Net Generation (Billion Kilowatthours)

And help reduce GHG emissions in the US The switch to natural gas and better efficiency have the biggest impact

To everyone's surprise, the US has been reducing GHG intensity

Global warming is a matter of fact, not faith

Facts confirm climate change

Letter To The Editor | October 16, 2017

THE DAILY GAZETTE | Thursday, November 2, 2017

SHARE
In an Oct. 9 letter criticizing an earlier letter to the editor, Bob Lindinger said he was "not a global warming believer or a global warming denier.." I found his choice of the word "believer" an interesting one, since it implies that global temperatures are something that can't be measured, but must rather be taken on faith.
Personally, I use a device called a thermometer to measure temperature. It tends to take all the believing and non-believing out of the process.
Mr. Lindinger went on to say, "Climate change proponents have made their cause a matter of faith" (again, an interesting choice of words), citing "a great physicist like"

 Houston Astros gear available here,

 tuto put

As engineers and scientists, we need to ensure we stay credible here

How do you measure the temperature of a gas turbine combustor?

How do you measure the temperature of the earth?

Two awesome technologies:

2. Wind Turbines

GE is big in Renewable Energy

Onshore Wind

35,000 turbine #2 Global supplier

Offshore Wind

Setting the benchmark for the marine energies industry First US offshore site

Hydro

Collaborating with customers as a leading player in the hydropower market

LM Wind Power

Insourcing blade mfg. to strengthen GE's supply chain

\$10B sales, 80+ countries, 22,000 employees, 400GW installed base

GE wind turbines are awesome machines...

GE's 2.0-116 onshore turbine

- 2 MW and 116m rotor diameter
- 53.3% gross capacity factor at 7.5 m/s
- 57 meter blades
- -127m tower heights
- sophisticated technology for loads, wake control, and reliability

...and I love climbing them and spreading the word

...and I thought you might enjoy a brief tour

But they weren't always awesome:

GE gradually replaced everything with our designs, internal manufacture

And the result was a huge increase in turbine availability

Why renewable energy will be small, even if we want it to be big, and fossil fuel will be big, even if we want it to be small

Wind and Solar costs keep dropping and installations keep growing

And countries keep setting records for wind and solar output

The amounts of electricity generated were enough to power 197 million European households or 68%

So why do electricity prices keep going up?

Renewables is *duplicate* capacity not *additional* capacity.

- What is the *minimum*, not the *maximum*?
- Conventional fuels are used less but everything still needed as backup.

Even renewable energy advocates like me want reliable power

I don't want to use my factory just 32% of the time.

I don't want to turn off appliances on calm days? I won't buy a car that starts just 11% of the time?

The reality is, you and I need dependable power

In addition, wind and solar put pressure on the grid....

- Mid-day excess solar power can drive conventional production and prices down
- Conventional sources must ramp power quickly as sun sets

...and put pressure on conventional power producers

- RWE pays for the same assets but gets less revenue.
- Can Germany allow RWE to go bankrupt?

But what about storage?

Potential for storage applications (cumulative, US)

As costs comes down, opportunities go up.

But even significant battery storage has a small impact on overall grid

California Peak Demand Day (July 27, 2016)*

* Based on CAISO data. 231 TWH of total annual load in 2016, with ~13% coming from solar and 7% from wind generation. Renewable generation based on CAISO daily renewables watch for July 27 2016.

- 20% solar and wind
- Potential for 4GW to battery storage early in day
 - \$4.5B
 - appx 2x total global capacity today
- 14.7 GWhr of shift that day
 3% of total CA annual demand
- Need smaller peak in conventional production later in day.
- Gas turbine capacity factor drops from 46 to 43%

Renewables costs are getting competitive

Equipment and installation cost

Tachnalage	First evaluable year'	Sies (MW)	Load Une (pears)	Beau anathing(14 anathin Jatak (2010) S/(NW)	Project Cantin- gency Eactor ¹	Tackris- Ingical Optimium Eastor ¹	Takal overnight cost in 2018 ^{1, or} (2016 5/5W)	Vartable D&AT (2018 S/MWH1	fixed OBM (283.65/ XW/(yr)	Head rater In 2015 (Disc/Krith
Coal with 30%	12115	10100		1000	1.25	1140.00		¥ 45	1.12	100
Coal with 90%	Next	450		4,586	1.07	1.08	5,640	106		5,750
Cartern sequentination	2020	150		8,072	1.07	1.09	5,562	9.54	80.78	31,650
Cycle	2018	708	3	623	1.05	1.00	845	3.48	10.99	6,600
Cutte (CC)	2015	428	- 1	1.013	1.08	1.00	3,094	1.99	3.94	8,300
Advitic with carbon sequestration	2019	140		4,867	1.00	1.08	3,150	7.08	15.25	7,621
Corre Correll Turbries ¹⁴	2018	100	1	1,040	3.05	8.480	1,000	5.48	17.99	9,800
Adv Coreb Turtiane	2018	2.97	1	640	1.05	1.00	672	1649	6.76	5,89
Fuel Carls	2019	18		6,252	1.05	1.10	7,221	86.91	0.00	8,500
Adu Nachter Datelischer	2833	2,134		5,091	1.10	1.05	6,880	3.38	91.00	50,897
Generation - Base	2019			1,403	1.05	1.00	3,556	8.30	18.25	6,96
Garlengfern - Puak	2016	- 1	- 2	1.757	1.05	1.00	1,845	8.10	18.23	8.97
Romana	Milli	50	4	8,540	1.07	6.00	8,7980	5.40	9342-84	11,908
facothermol ^{8,4}	70,00	60		2,586	1.0%	1.00	2,719	0.00	112.00	8,81
MILW - Landfill Get Conversional	2010	50		8,059	1.07	1.00	6,623	8.14	410.32	14,00
Hydrogeneer ²	2020	505	. 4	3,290	1.10	1.00	2,442	2.66	14.95	9,93
Velocitie	2019	3180		1,576	1.07	5.00	3,8690	0.00	46.73	3,930
William CHINARE	2020	800		4,648	1.10	1.25	0.001	0.00	77.85	5,931
Solar Thurnal	2019	100	3	3,008	1.07	1.00	4,182	0.00	70.20	5.51
Manager and Addition	1010	144		0.000	1.000	1.00		11.000	22.64	

Coal	\$ 3,100 /kw
Nat gas	\$ 970
Nuclear	\$ 5,800
Wind	\$ 1,700
Solar PV	\$ 2,300

Operating cost

Table 1b. Estimated LCOE (simple average of regional values) for new generation resources, for plants entering service in 2022

	U.S. Aserage LCOI (2016 S/MMh) for Plants Extension Service in 2022								
Plant Type	Capacity Factor (%)	Levelined Capital Cost	Fired O&M	O&M (Including Net)	Transmission	Tatal System LCOE	Levelind Tan Credit ¹	Tutal LCOX Including Tax Credit	
Elizpatchable Technologies									
Coal 30% with carbon anguestration?	#5	94.9	9.3	38.6	1.2	140.0	10.	140.0	
Coal 90% with carbon anguestration?	85	76.0	10.6	35.1	5.2	125.2	- 14	523.2	
Natural Gas-fired									
Conventional Combined Cycle	87	13.0	1.4	40.8	1.3	\$7.8	-114	\$7.5	
Advanced Conterred Cycle	87	13.8	1.3	38.1	1.8	56.5	314	56.5	
Advanced CC with CCS	87	29.5	4.4	47.4	1.1	82.4	- 64	82.4	
Conventional Combustion Turbine	80	40.7	6.6	38.6	8.5	305.4	- 10.0	\$09.4	
Advanced Combustion Turbine	30	25.9	2.6	82.7	3.5	94.7	- 10.4	94.7	
Advanced Nuclear	90	73.6	32.6	11.7	3.5	99.3	314	09.1	
Genthermal	95	32.2	12.8	8.8	1.5	46.5	-8.2	43.1	
Biomain	81	46.7	15.2	41.2	1.8	382.4		302.4	
Non-Dispatchable Technologies									
word - Onshore	39	47.2	13.7	0.0	2.8	65.7	+11.6	52.2	
wind - Offelser	45	111.0	19-6	0.0	4.8	157.4	-11.6	145.1	
laster #v*	24	79.3	10.5	0.0	4.4	#1.0	-18.3	66.8	
Solar Thermal	30	191.9	44.0	0.0	6.5	242.0	-57.6	104.4	
Hydroniscolic*	38	56.3	8.4	4.8	5.8	66.3		66.3	

Coal	\$ 35 /MWhr
Nat gas	\$ 35
Nuclear	\$ 20
Wind	\$12
Solar PV	\$ 9

ee)

But, again, is cheap intermittent power as good as expensive reliable power?

Consequently, renewables is growing fast but is a small slice of total pie

Competing objectives: What problem are you trying to solve? What would you do?

Problem 1: Human suffering *The Economist,* Chart of the Day, November 8, 2017

Africa

- more people in Ethiopia have cell phones than access to electricity
- ~600,000/yr die from indoor cooking

India

"It's a matter of shame that 68 years after independence we have not been able to provide a basic amenity like electricity."

- Piyush Goyal, Minister of Power, India

Problem 2: Long term global impact

So, what would *you* do with \$1B?

choice of power source	households that will get power	availability of that power	fuel cost	availability of fuel	greenhouse gas impact
coal	700,000	98%	\$4/MWhr	good	very high
natural gas	1,900,000	98%	\$3/MWhr	pipeline or LNG tanker	high/moderate
nuclear	350,000	98%	\$1/MWhr	good	none
solar	880,000	15%	free	most locations	none
solar - with storage	40,000	70%	free	most locations	none

The answer is not obvious

My guess is that the future will not be too different from the past global electricity generation by fuel

All this and more will be part of the solution.

Thank you