Battery Energy Storage Systems Power electronics interface and grid integration

Marco Stecca

TUDelft

18th October 2022

DC systems, Energy conversion & Storage

DCE&S

Motivation

Research objective

Introduction	Part 1	Part 2	Part 3	Conclusions

My PhD thesis title:

Battery Energy Storage Systems: power electronics interface and grid integration

Power electronics interface

- Critical for BESS performance
- Enable BESS functionalities

Grid integration

- Defines BESS business case
- Defines impact of BESS on the power system

The two elements are key for a successful BESS deployment

Research vision

Introduction	Part 1	Part 2	Part 3	Conclusions
Power electronics int – Enhance effic – Optimize desi mission profil – Enable new fe	erface: iency while keeping costs low ign and reliability according to e unctionalities*	Grid int 	egration: Combine multiple function Enable new functionalities	nalities ;*
Ťu Delft				MV-LV substation Load Derivation Line Main Feeder

Structure of my thesis

Power electronics converter

Power electronics converter

Converter requirements

Ir	ntroduction	Part 1	Part	2	Part 3	Conclusions
M	ain performance indic	ators:	Ma	ain design varia	ables:	
•	Cost		•	Topology (2L	evel/3Level/Mul	ti Level/)
•	Efficiency (static and	d of mission profile)	•	Semiconduct	or technology (S	i/SiC)
•	Power density		•	Switching fre	quency and mod	ulation
•	Expected lifetime		•	Overrating		
•	Complexity		•	Passive comp	oonents (magneti	cs, capacitors,)
•	EMI/THD					

Two Level Converter

Hybrid switch

Introduction Part 1	Part 2	Part 3	Conclusions
---------------------	--------	--------	-------------

Assembled by paralleling a Si IGBT and a (small!) SiC MOSFET

- MOSFET switching losses (+)
- Current sharing at low current (+)
- Extra gate driver signal (-)

Work done

Modelling

elft

- Switch characterization
- Implementation in two level converter

Modelling and characterization

Current conduction

ŤuDelft

From: C. Tan, "Electric Vehicle Traction Drive using Si/SiC Hybrid Switches", 2020.

Experimental set up

Introduction	Part 1	Part 2	Part 3	Eoncleisionk

Double Pulse Test for measuring conduction and switching performances

Hybrid switch performances

Verified the analytical models:

Obtained switching characteristics:

Hybrid switch in a two level converter

Hybrid switch in a two level converter

Introduction	Part 1	Part 2		Part 3	Conclusio	ns
Benchmarking of mis – BESS perform – 100kW system	sion profile losses ing primary frequency regu n / 1 year mission profile	lation	Loss/cost i hybrid swi	improvement rat tches	tio favourable fo	r
800		800				
600	mcHyS	600		Switch	Loss/Cost	
× 400	THYS MOSFET			MOSFET	33%	
Posse		Cos		tHyS	82%	
200		_ 200		mcHyS	92%	
° ÉU Delft	Losses Cost					16

Conclusions on hybrid switch

Introduction Part 1 Part 2 Part 3 Conclusion	าร
--	----

• The analytical model confirmed by experimental results.

- Modulation verified in a two level converter operation.
- Performance in between the pure Si IGBTs and SiC MOSFETs.
- Loss/cost improvement ratio is higher than SiC MOSFETs.

Enabling new functionalities

The power redistributor functionality

DC-link currents

Introduction	Part 1	Part 2	Part 3	Conclusions
--------------	--------	--------	--------	-------------

Compensating the unbalance leads to current harmonics in the DC-link:

- DC current battery
- High frequency capacitors
- 50Hz capacitors
- 100Hz battery

Harmonics impact

Advantageous to integrate the functionality in a single unit

UDelft

Test set up

Introduction	Part 1	Part 2	Part 3	Conclusions

Hardware in the loop set up to verify the model and functionality

- OPAL-RT based
- Two level converter and LCL filter
- 3kW prototype

Test set up

Introduction	Part 1	Part 2	Part 3	Conclusions
--------------	--------	--------	--------	-------------

Battery is capable to provide functionality

Current harmonics as predicted

23

Impact on battery cells

Introduction	Part 1	Part 2	Part 3	Conclusions
Arbin battery tester t current on 18650 Li-io 100H 100	o evaluate the impa on cells Hz=50% Hz=25% 0.75C	act of the 100Hz	Battery cells under test inside the test chamber	<image/>
AC ripple leads to ~ 4	DC component [C-rate]			

Conclusions on power redistributor

	Introduction Part 1 Part 2 Part 3 Conc	usions
--	--	--------

- Provided design method for BESS providing the functionality.
- DC-link capacitors can satisfy the thermal and capacitance requirements.
- AC ripple's leads to an increase in battery degradation of 10%.
- Power redistributor functionality can be added without significant hardware expansions.

Combining multiple functionalities

Combining multiple functionalities

Battery dispatching model

PV-EV charging station

Example of dispatch

Connection cost reduction

Battery can successfully reduce peak power and therefore connection costs

Net Present Value Analysis

Introduction	Part 1	Part 2	Part 3	Conclusions
--------------	--------	--------	--------	-------------

Overall the provision of services to the EV charging station has a positive economic impact

Conclusions on battery dispatch

Introduction	Part 1	Part 2	Part 3	Conclusions
--------------	--------	--------	--------	-------------

- Provided dispatch algorithm which could be integrated with forecasting tool
- Integrating multiple functionalities can benefit all the involved players in the distribution grids
 - Battery owner will have higher revenues
 - EV charging station owner will pay less connection costs and a lower energy bill
 - DSO will have less congestions in the grid

Conclusions

Summary

Introduction	Part 1	Part 2	Part 3	Conclusions
--------------	--------	--------	--------	-------------

- Optimization of the battery power electronics can lead to lower total cost of ownership, and enable new functionalities
- Power redistributor functionality can be added without significant hardware expansions
- Integrating multiple functionalities can benefit all the involved players in the distribution grids

Future work

Introduction	Part 1	Part 2	Part 3	Conclusions
--------------	--------	--------	--------	-------------

- Application of three-level and multi-level topologies in BESS and how to optimize their design, so to achieve higher performances.
- Further optimize the hybrid switches exploiting the internal delays, boosting the partial load efficiency.
- Aggregation of multiple BESSs, implementing a coordination layer between multiple units in the same network, not only to optimize the grid performance, but also to avoid conflicting actions.
- Address how to allow a BESS owner to provide services to the various grid players, such as generators, loads, and operators from the regulatory point of view.

Publications - 1

Introduction	Part 1	Part 2	Part 3	Conclusions

Journal papers of this thesis:

- 1. M. Stecca, L.R. Elizondo, T.B. Soeiro, P. Bauer, P. Palensky, "A Comprehensive Review of the Integration of Battery Energy Storage Systems Into Distribution Networks", IEEE Open Journal of the Industrial Electronics Society, 2020, vol.1, pp. 46-65;
- 2. M. Stecca, T.B. Soeiro, L.R. Elizondo, P. Bauer, P. Palensky, "Lifetime Estimation of Grid-Connected Battery Storage and Power Electronics Providing Primary Frequency Regulation", IEEE Open Journal of the Industrial Electronics Society, 2021, vol.2, pp. 240-251;
- 3. M. Stecca, C. Tan, J. Xu, T.B. Soeiro, P. Bauer, P. Palensky, "Hybrid Si/SiC Switch Modulation with Minimum SiC MOSFET Conduction in Grid Connected Voltage Source Converters", IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, vol.10, pp. 4275-4289;
- 4. M. Stecca, T.B. Soeiro, A.K. Iyer P. Bauer, P. Palensky, "Battery Storage System as Power Unbalance Redistributor in Distribution Grids Based on Three Legs Four Wire Voltage Source Converter", IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, early access;
- 5. L. Argiolas, M. Stecca, L.M. Ramirez Elizondo, T.B. Soeiro, P. Bauer, "Optimal Battery Energy Storage Dispatch in Energy and Frequency Regulation Markets while Peak Shaving an EV Fast Charging Station", IEEE Open Access Journal of Power and Energy, 2022, vol. 9, pp.374-385

Publications - 2

Introduction	Part 1	Part 2	Part 3	Conclusions
Conference papers of this thesis				

connerence papers or this thesis.

- 1. M. Stecca, L.M. Ramirez Elizondo, T.B. Soeiro, P. Bauer, "Energy Storage Sizing and Location In Distribution Networks Considering Overall • Grid Performance", 2020 IEEE Power&Energy Society General Meeting (PESGM), 1-5;
- 2. M. Stecca, T.B. Soeiro, L.M. Ramirez Elizondo, P. Bauer, P. Palensky, "Comparison of Two and Three-Level DC-AC Converters for a 100 kW • Battery Energy Storage System", 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 677-682;
- 3. M. Stecca, T.B. Soeiro, L.M. Ramirez Elizondo, P. Bauer, P. Palensky, "LCL Filter Design for Three Phase AC-DC Converters Considering • Semiconductor Modules and Magnetics Components Performance", 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe).

Acknowledgements

Introduction	Part 1	Part 2	Part 3	Conclusions

This research is financed by the project `Integration of Battery Energy Storage Systems in Distribution Grids (FLEXBat)'. The FLEXBat project has received funding from the Dutch financial source 'Urban Energy' from RVO (Rijksdienst voor Ondernemend Nederland), Project TEUE117013.

Batteries are and will be a key technology for future grids

