AGING OF LI-ION BATTERIES AND HOW TO DEAL WITH IT

FLEXINet Realising Hybrid Energy Storage workshop 3/10/2023
Luis D. Couto, Grietus Mulder, Raf Ponnette
AGING OF LI-ION BATTERIES AND HOW TO DEAL WITH IT

- Li-Ion battery
- Aging Mechanisms
- Modelling fresh and aged cells
- Testing
- Parameter estimation
- Using the model
LI-ION BATTERY PRINCIPLE

Cu current collector
Active material Li_xC_6
Electrolyte

Al current collector
Active material $LiMeO_z$
Filler, Binder & Electrolyte

Carbon
Li
Li^+
e$^-$
KEY BATTERY SPECS FOR STATIONNARY BATTERIES

A few typical values

<table>
<thead>
<tr>
<th>Battery Specs</th>
<th>Unit</th>
<th>Remark</th>
<th>Home ESS</th>
<th>SME ESS</th>
<th>Utility ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Pack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Energy capacity</td>
<td>kWh</td>
<td>Time to deliver power</td>
<td>5 (2-10)</td>
<td>20-200</td>
<td>>1000</td>
</tr>
<tr>
<td>Battery pack Weight</td>
<td>kg</td>
<td>Installation location</td>
<td>54</td>
<td>200-2000</td>
<td>> 10000</td>
</tr>
<tr>
<td>Cell gravimetric Energy density</td>
<td>Wh/kg</td>
<td></td>
<td>140 (LFP prism)</td>
<td>170 (NMC prism)</td>
<td></td>
</tr>
<tr>
<td>Cell volumetric Energy density</td>
<td>Wh/l</td>
<td>Required space</td>
<td>280 (LFP prism)</td>
<td>350 (NMC prism)</td>
<td></td>
</tr>
<tr>
<td>Discharge rate</td>
<td>C-rate</td>
<td>Discharging power</td>
<td>0,8C</td>
<td>1,5C</td>
<td></td>
</tr>
<tr>
<td>Charge rate</td>
<td>C-rate</td>
<td>Charging time</td>
<td>0,5C</td>
<td>0,8C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>°C</td>
<td>Indoors</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Cycle Lifetime</td>
<td>#EqCyc</td>
<td>Application requirements</td>
<td>10000?</td>
<td>6000?</td>
<td>8000?</td>
</tr>
<tr>
<td>Calendar Lifetime</td>
<td>Years</td>
<td>min 10 years</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>
LIFETIME SPECIFICATIONS

- Examples in datasheets:
 - 10 years performance warranty (EoL capacity 70%) => is this 3650 cycles?
 - 10000 cycles (at ?? which conditions)
 - >3200 Cycles 25°C, 80% EoL, 0.5C/1C
 - 6000 Cycles @ 100% DoD | 70% EoL | 23°C +/-5°C 1C/1C

- Lifetime in number of cycles specified for:
 - Depth of discharge
 - C-rate for charging
 - C-rate for discharging
 - Temperature
 - End of Life condition

- What if my application profile and conditions are different?
DEGRADATION DEPENDS ON ...

- DoD
- C-rate charging
- C-rate discharging
- Temperature

AND Li-Ion batteries degrade, Even if they are not used! => avoid high SoC (and low SoC)

Main degradation mechanisms

▪ SEI growth
▪ Surface cracking
▪ Loss of active material

HOW TO MODEL A FRESH BATTERY? HOW TO ADD AGING?

- **Bucket:**
 degradation usually limited to linear degradation in 1 condition

- **Equivalent Circuits:**
 parameters for each condition degradation modelling requires (non-physics based) additions

- **Empirical/mathematical:**
 usually fitted on a limited data set degradation requires addition of functions

\[U = f (I, \text{SoC}, T) \]
HOW TO MODEL A FRESH BATTERY? HOW TO ADD AGING?

- Reduced complexity electrochemical models like Single Particle Model (SPM) physico-chemical degradation mechanisms => good compromise between accuracy and complexity

- Accurate high complexity electrochemical models like Doyle–Fuller–Newman (DFN) physico-chemical degradation mechanisms => usually for improving cell design

SINGLE PARTICLE MODEL ELECTROCHEMICAL MODEL

\[
\begin{align*}
\frac{\partial c_i(r,t)}{\partial t} &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(D_i r^2 \frac{\partial c_i(r,t)}{\partial r} \right) \\
D_i \frac{\partial c_i(r,t)}{\partial r} \bigg|_{r=0} &= 0 \\
D_i \frac{\partial c_i(r,t)}{\partial r} \bigg|_{r=R_i} &= -\frac{i_i(t)}{F} = -\frac{I(t)}{V_i a_i F} \\
c_i(r,0) &= c_{i,0}(r)
\end{align*}
\]

Voltage \(\eta_i \)

\[
\eta_i(c_i(R_i,t), I(t)) = \frac{R_s T}{\alpha F} \sinh^{-1} \left(\frac{I(t)}{2V_i a_i i_{i,0}(c_i(R_i,t))} \right)
\]

\[
i_{i,0}(c_i(R_i,t)) = F k_i \sqrt{c_i(R_i,t) c_{el}(c_i^{\text{max}} - c_i(R_i,t))}
\]

+ thermal model + degradation mechanisms
Commercial Battery Kstar BluE-Pack 5.1 S 3680D 5.12kWh 230V 1ph
- Passive air convection cooling. Multi-days test with additional temperature sensors.
- Up to 35°C in room temperature conditions.

CATL cells aging tests
- 18 CATL cells cycling aging tests at 35°C at various C-rates & SoC windows.
- 16 CATL cells calendar aging tests at various temperatures and SoC
Prototype cells with pure Si-anode from LeydenJar
FLEXINET LI-ION BATTERY CYCLE TESTS

Each test has 2 cells and 2 types of experiments (characterization & cycling)

ΔSOC = 50

<table>
<thead>
<tr>
<th>CH\DCH</th>
<th>C/5</th>
<th>C/2</th>
<th>0.8C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/5</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C/2</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

ΔSOC = 90

<table>
<thead>
<tr>
<th>CH\DCH</th>
<th>C/5</th>
<th>C/2</th>
<th>0.8C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/5</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>C/2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

ΔSOC = 100

<table>
<thead>
<tr>
<th>CH\DCH</th>
<th>C/5</th>
<th>C/2</th>
<th>0.8C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/2</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Limits coming from KStar specs.
Across SOCs and C-rates, normalized, **time**

FLEXINET LI-ION BATTERY DEGRADATION
PARAMETER ESTIMATION IN DIFFERENT CONDITIONS – CAPACITY LOSS VS TIME

(a) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(b) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(c) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(d) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(e) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(f) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(g) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(h) \(Q_{\text{loss}} \) vs Time [d] for different conditions.

(i) \(Q_{\text{loss}} \) vs Time [d] for different conditions.
USING THE MODEL

▪ Battery Pack Manufacturers:
 ▪ Predict future degradation of the real battery via simulating the battery degradation model with specific application profiles under specific conditions with the aim to dimension and optimize the Battery Pack
 ▪ Determine warranty conditions & support Battery Pack Integrators
▪ Battery Pack Integrators
 ▪ Anticipate for unforeseen (new) usage of the battery pack
▪ Battery Energy Storage System Operators:
 ▪ Predict future degradation of the real battery via simulating the battery degradation model with various application profiles under various conditions with the aim to make better trade-offs when to use the battery (profit > cost of degradation)
 ▪ Include the model in the control loop
 => both to improve ROI
▪ Battery Cell Manufacturers:
 ▪ Use the model to improve understanding of degradation with specific application profiles under specific conditions with the aim to improve the cell design or cell manufacturing
• Battery usage can help alleviate demand for flexibility and earn a return
• Electricity prices on flex markets are very volatile
• Rapid charging/discharging of battery will lead to high cycling of the battery and impact the aging of the asset
• Aging algorithms such as VITO’s physics-based models will help understand the impact and improve the lifetime or the revenue (within the default lifetime) and thereby the return on investment
CONCLUSIONS

- Li-Ion battery aging depends on many factors
- Little information is publicly available on this
- Battery models help to deal with the aging of Li-Ion batteries
- All models require testing of cells (and modules) or live data acquisition to estimate their parameters
- The Single Particle Model is a good compromise between accuracy and complexity
- Method has been proven for both NMC and LFP batteries
- Method allows to increase ROI

Part of this work has been done within the FLEXINet project which is being carried out with subsidy from the Dutch Ministry of Economic Affairs and Climate Policy and the Ministry of the Interior and Kingdom Relations, under the Mission-based Research, Development and Innovation ("MOOI regeling" in Dutch; project reference MOOI32027)