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Presentation Overview

 Research Overview

 State-of-the-art, Motivation & Scientific Gaps 

 Contributions & Challenges

 Work & Results

 Part 1: Grid Impact of Energy Transition
 Methodology & Results

 Part 2: Management of Grid Impact with Coordinated Control
 Methodology & Results 
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Research Overview

Part 1: Grid Impact of Energy Transition

Part 2:  Management of Energy Transition’s Grid Impact with 
Coordinated Control
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State-of-the-art & Motivation
Future Grid Impact & Management

Impact must be identified!

A number of works related with grid impact exist but:
Only very few integrate all 3: PVs, HPs, EVs
We focus on modelling the physical operation of components 

(bottom-up approach)

Energy Transition Abrupt increase of electric demand & generation

Uncontrolled penetrations

Several grid impact issues

Scientific Gap
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State-of-the-art & Motivation
Future Grid Impact & Management

Energy Transition Abrupt increase of electric demand & generation

Scientific Gap

If control is implemented in EMS:
 grid impact, congestions minimization
Reduce consumption, peaks
Increase penetrations
With flexibility of “Smart Loads”
With Energy Storage Systems (ESSs)

and/or

Impact must be controlled!

A number of works related with control exist but:
Few works integrate all EVs, PVs, HPs (and ESS)
Consider detailed component physical operation (degradation)
Compare importance of Smart Loads & ESSs
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Research Goal Statement

“How can Renewable Energy Sources (RES), Energy Storage Systems 
(ESS), Electrified Mobility & Heating be intelligently managed in 

future Distribution with the goals of minimum grid impact and 
maximum cost savings?”

Location in NEON Research

NEON Work Package 2: Energy Transport

“New Energy and mobility Outlook for the 
Netherlands”
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From Grid Impact to Coordinated Control !
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Concept of Coordinated Control & Contributions 

G D X

RES (Solar & Wind Energy) “Smart Loads” 
(EVs, Heat Pumps)

Energy Storage

Grid Frequency 
Regulation

Maximum 
Cost Savings

Congestion 
Management
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Concept of Coordinated Control & Contributions 
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Cost Savings
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1. grid-level 
control with 

PVs, EVs, & HPs

2. Degradation and 
physical operation 

of components

3. Efficient bidding 
strategy & all types 

of f regulation

5. Comparison 
between shared 

storage and 
distributed storages

4. Comparison 
between storage 
and smart loads
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Concept of Coordinated Control & Challenges 

Data-Driven or Physical 
Modeling?
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MI(N)LP: 
 inner-system knowledge
 interpretability of results
 Less dependence on data 
BUT
usually slow and computationally 

expensive
convergence hazards 
Uncertainty management with 

additional implementations

Pros

Cons

Machine Learning:
 good trade-off between 

accuracy-time
 inherently manages 

uncertainties 

BUT 
 data-dependence 
 black-box representation

Selection of optimization method is crucial !

1. Task Division

What about combination ? 

2. Use of the one to deal 
with the defects of the other !



16

Concept of Coordinated Control & Challenges 

Data-Driven or Physical 
Modeling?
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Concept of Coordinated Control & Challenges 

Data-Driven or Physical 
Modeling?

Centralized or Decentralized?
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 Centralized:
 globally optimized results
 one point-of-view
but
computationally expensive
 hardly scalable
 what about reality? (privacy issues, vast use of smart-meters,

communication equipment)

Pros Cons

Pros Cons De-centralized:
 Scalable
 computationally lighter (in-parallel optimizations)
 more “real” (consumers may not want to give control)
but
only near-to-optimal results
many points-of-view, many actors with different objectives

!
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Concept of Coordinated Control & Challenges 

Data-Driven or Physical 
Modeling?

Centralized or Decentralized?
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Concept of Coordinated Control & Challenges 

Optimization

Power 
Dispatch

Energy 
Storage

Ancillary
Services Degradation

Data-Driven or Physical 
Modeling?

Centralized or Decentralized?
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Concept of Coordinated Control & Challenges 

Optimization

Power 
Dispatch

Energy 
Storage

Ancillary
Services Degradation

Data-Driven or Physical 
Modeling?

Centralized or Decentralized?

…
Optimization Results

Grid Operation Check

If an issue occurs:
 Who helps congestion 

management?
 With what flexibility?
 If a load must be 

curtailed, what priority?
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Methodology & Results

Part 1: Grid Impact of Energy Transition
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PV, EV, Building & HP Models
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PV Generation 

 Inputs 
 Weather Data from Meteonorm database

 Irradiation, ambient Temperature, Wind speed

 Panasonic HIT PV Module Specifications
 Size
 MPP Characteristics
 STC Characteristics
 NOCT Characteristics

 90 random 3kW rated PV Power Profiles generated by Monte-Carlo Simulation 

 Irradiation impact on efficiency

 Module Temperature impact on efficiency

 Module Temperature calculated by Duffie-Beckman model
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PV Generation 
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EV Consumption 

 Inputs (Elaad Open Database)
 Arrival and Departure SOCs
 Requested Energy 
 Arrival and Departure Times

 Inputs (considered various EVs)
 Rated current 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟
 Battery Capacity 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏

 200 weekly datasets for Home, Semi-Public & Public Chargers generated by MCS  

Linearized representation 
of CC-CV EV charging

The above work is part of the PhD project of student Yunhe Yu, who works on OSCD project

 EV Constant Current – Constant Voltage 
Charging (CC-CV) Behavior

 30% higher EV consumption during Winter due 
to heating
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EV Consumption

Home, Semi-Public & Public Chargers’ Behavior during 2-days time period
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Building & HP Models

Required Conductivity U-values 
for new buildings:
 𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 < 0.3 𝑊𝑊/𝑚𝑚2𝐾𝐾
 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.18 𝑊𝑊/𝑚𝑚2𝐾𝐾
 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < 0.22 𝑊𝑊/𝑚𝑚2𝐾𝐾

 Typical Dutch Terraced House

 New Conductivity Norms & Insulation Analysis

 Residential & Commercial Building Occupancy Profiles

 HP Specifications (e.g Output Capacity) from reversible LIK 8MER HP Module
 ON-OFF Air-Sourced Heat Pumps, Floor-heating
 Space-heating and DHW 
 No Thermal Storage for Grid Impact Analysis

 Weather Data from Meteonorm database

 COP model: estimated with regression from 10 different HP models
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Building Temperature and ON-OFF operation (winter week)

Building & HP Models

Building Temperature and ON-OFF operation (summer week)

Desired Building Temperature: 21-23 C
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HP Heating COPs vs ambient Temperature (winter week)

Building & HP Models
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Distribution Grids, Study Cases & Objectives
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Part 1: Grid Impact of Energy Transition

2 rural

Representative 
light-loaded

Representative 
heavy-loaded

Grid type
light 

suburban 
grid

heavy 
suburban 

grid

No. of Nodes 1742 1920

Nodes with loads 486 516

No. of loads 809 885

Yearly energy 
demand [MWh]

2353.03 2530.6

6 Dutch Residential & Commercial grids (Enexis)

Grid type
light 
rural 
grid

heavy 
rural 
grid

No. of Nodes 23 373

Nodes with loads 3 126

No. of loads 3 138

Yearly energy 
demand [MWh]

97.9 486.7

Grid type light urban 
grid

heavy 
urban 
grid

No. of Nodes 1334 1322

Nodes with loads 251 155

No. of loads 349 876

Yearly energy 
demand [MWh]

1680.223 2745.5
6

2 suburban 2 urban
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Grid Impact Issues:
 Transformer Overloading
 Lines Overloading
 Nodes Voltage Deviations 

(under- and over-voltage) 

Grid impact metrics 
Overall maximum issue magnitude
Overall issue duration
 Overall times of issue appearance
Magnitude & duration per issue time
 (Magnitude)x(duration) per issue time
 number of simultaneous issue 

locations within the grid

Study Cases:
 6 different distributional areas
 3 different load conditions: PVs-HPs, 

PVs-EVs, PVs-HPs-EVs
 4 different LCT penetrations: 0, 50, 80, 

100%
 1 week of 2 different seasons
 2 different ways of approach: top-down 

& bottom-up 

Objectives:
 the most vulnerable distributional area
 the most crucial grid impact issue
 the most ”heavy” LCT considering 

different penetrations
 the most ”heavy” season
 the overall grid impact of all LCTs
 Weekend/weekdays effects

Part 1: Grid Impact of Energy Transition
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Transformer Loading (1)

Transformer Maximum Loading at 0, 50, 80 & 100% penetrations of EVs, HPs 
& EVs-HPs during Summer & Winter per Distribution Grid 
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Transformer Loading (1)

 Winter heavier Season than Summer in all cases Interesting Insights

Transformer Maximum Loading at 0, 50, 80 & 100% penetrations of EVs, HPs 
& EVs-HPs during Summer & Winter per Distribution Grid 
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Transformer Loading (1)

 Winter heavier Season than Summer in all cases
 Mitigation of PV issues with Evs can be seen but not by HPs

Interesting Insights

Transformer Maximum Loading at 0, 50, 80 & 100% penetrations of EVs, HPs 
& EVs-HPs during Summer & Winter per Distribution Grid 
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Transformer Loading (1)

 Winter heavier Season than Summer in all cases
 Mitigation of PV issues with Evs can be seen but not by HPs
 Different slopes for T/F loading increase in different grids

Interesting Insights

Transformer Maximum Loading at 0, 50, 80 & 100% penetrations of EVs, HPs 
& EVs-HPs during Summer & Winter per Distribution Grid 
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Transformer Loading (2)

Interesting Insights
 Suburban Area most vulnerable in all cases

Magnitude & Duration of Violations during Summer & Winter at 50, 80 & 
100% penetrations of HPs & EVsat 3 most vulnerable Distribution Grids 

 Over-voltage less likely to appear than Under-voltage

 HPs heavier LCT than Evs (both in magnitude & duration & violation times
 However, Evs have generally high violation durations 
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Methodology & Results

Part 2: Management of Grid Impact with Coordinated 
Control 
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Part 2: Management of Grid Impact with 
Coordinated Control

 Initial Stage: 

 Only Power Dispatch, MILP Rolling-Horizon Optimization

 Only 1 node (3 Buildings, 4 Chargers)

 Simplifications need yet to be solved
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Part 2: Management of Grid Impact with 
Coordinated Control

 Objectives:
 EVs all charged upon departure (EV penalty)
 All Buildings thermal comfort [21, 23] respected (HP penalty)
 No PV curtailment (PV penalty)
 Min grid exchange power cost

 Constraints:
 Node Power Balance
 Grid, Chargers, EVs, PV, HP Limits
 Buildings Thermal Balance
 SOCs, Buildings Temperature Dynamics

 Simplifications to be addressed:
 No Domestic Hot Water, only space heating
 Non-linearities are avoided, to be addressed with AI
 Re-optimization only upon new EV arrivals



42

Coordinated Control Results
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EV arrivals
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Buildings
Heating 
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EV
Charging
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PV 
Generation  
exported
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Thank you for your attention!!!

Questions?
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Appendix A: Developed Models in-detail



53

PV Generation Model
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PV Generation (1)

𝐺𝐺𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑁𝑁𝑁𝑁(sin𝜃𝜃𝑀𝑀 cos𝛼𝛼𝑠𝑠 cos 𝐴𝐴𝑀𝑀 − 𝐴𝐴𝑠𝑠 + cos𝜃𝜃𝑀𝑀sin𝛼𝛼𝑠𝑠

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮: 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐺𝐺𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐺𝐺𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐺𝐺𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐺𝐺𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝐻𝐻𝐻𝐻
1 + cos𝜃𝜃𝑀𝑀

2
: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐺𝐺𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐺𝐺𝐻𝐻𝐻𝐻 ∗ 𝑎𝑎 ∗ 1 −
1 + cos𝜃𝜃𝑀𝑀

2

 Inputs (Meteonorm): 
 DNI (Direct Normal Irradiance)
 DHI (Diffuse Horizontal Irradiance)
 GHI (Global Horizontal Irradiance) 
 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎, wind speed: w

 Inputs (PV module):  IT PV module, see appendix
 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀, 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀
 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀

𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆∗𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
, 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

 𝑉𝑉𝑂𝑂𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐼𝐼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆: Standard Test Conditions

 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑉𝑉𝑂𝑂𝑂𝑂 , 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝐼𝐼𝑆𝑆𝑆𝑆, 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀: Temperature 
Coefficients

 NOCT, 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 Assumptions 
 Tilt angle: 𝜃𝜃𝑀𝑀
 Module Orientation: 𝐴𝐴𝑀𝑀
 Effective transmittance – absorptivity τα ~ 

0.9
 Albedo α (ground reflectivity of roofs)
 Inverter efficiency: 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖

Module Temperature: Duffie-Beckman model

𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 +
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴
𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 20𝐶𝐶 ∗
9.5

5.7 + 3.8 ∗ 𝑤𝑤 (1 −
𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆

𝑡𝑡𝑡𝑡~0.9 )

𝑃𝑃 = 𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝑷𝑷𝑷𝑷 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮:
calculation

Monte Carlo 
Simulation

Tilt angle = [10, 50], step = 10 

Module orientation = [0, 360), step = 20

90 PV 3kW rated power profiles
Randomly distributed

12 Panels x 245W
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PV Generation (2)

Efficiency: Temperature dependent Efficiency: Irradiance dependent

𝜼𝜼𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝜼𝜼(𝐓𝐓,𝐆𝐆)

𝑉𝑉𝑂𝑂𝑂𝑂 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑉𝑉𝑂𝑂𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 +
𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞

ln
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

∗ 𝑁𝑁

𝐼𝐼𝑆𝑆𝑆𝑆 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐼𝐼𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 ∗
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐹𝐹𝐹𝐹 ∗ 𝑉𝑉𝑂𝑂𝑂𝑂 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐼𝐼𝑆𝑆𝑆𝑆 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 ,

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹 =
𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆

𝜂𝜂 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴

𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜂𝜂 ΤΜ,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜂𝜂 25𝐶𝐶,𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 ∗ [1 +
𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆

∗ 𝑇𝑇Μ − 25𝐶𝐶 ]

𝑉𝑉𝑂𝑂𝑂𝑂 ΤΜ,𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑂𝑂𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑉𝑉𝑂𝑂𝑂𝑂(ΤΜ − ΤSTC)

𝐼𝐼𝑆𝑆𝑆𝑆 ΤΜ,𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐼𝐼𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝐼𝐼𝑆𝑆𝑆𝑆(ΤΜ − ΤSTC)

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 ΤΜ,𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀(ΤΜ − ΤSTC)

𝜂𝜂 ΤΜ,𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 ΤΜ,𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆

𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝜂𝜂 ΤΜ,𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 − 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆

ΤΜ − ΤSTC)
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PV Generation (3)
Results
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EV Model
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EV Consumption (1)

 Inputs (Elaad Open Database)
 Arrival and Departure SOCs
 Requested Energy 
 Arrival and Departure Times

 Inputs (considered various EVs)
 Rated current 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟
 Battery Capacity 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏

200 weekly datasets for Home, 
Semi-Public & Public Chargers 

 0-80% Constant Current Region
 80-100% Constant Voltage Region

Linearized representation of CC-CV EV charging

𝐼𝐼𝑐𝑐𝑐𝑐 𝑡𝑡 = 5 ∗ 1 − 𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡 ∗ 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = min(𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡), 𝐼𝐼𝑐𝑐𝑐𝑐(𝑡𝑡))

𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡 < 80%: 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡 > 80%: 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝐼𝐼𝑐𝑐𝑐𝑐 𝑡𝑡

CC-CV Region

MCS

The above work is part of the PhD project of student Yunhe Yu, who works on OSCD project
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EV Consumption (2)

Summer

Winter

𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎

𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎′

𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑

𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑′

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑= 𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑= 𝑆𝑆𝑆𝑆𝐶𝐶′𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑆𝑆𝐶𝐶′𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐼𝐼𝐼𝐼
𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 130%

&

Assuming that 𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑′ = 𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑

𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎′ = 1.3𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 − 0.3𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑

&

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′ = 𝑆𝑆𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑′ − 𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎′ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

…

The increased consumption during winter has been assessed in terms of arrival SOC & requested energy, keeping 
number of charging sessions steady 

30% Higher Consumption during Winter
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Building & Heating Models
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Considered Building Model Approach

Typical Dutch
Terraced House

Improvement of building insulation 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆:𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑈𝑈 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑈𝑈 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Required U-values for new buildings:
 𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 < 0.3 𝑊𝑊/𝑚𝑚2𝐾𝐾
 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 0.18 𝑊𝑊/𝑚𝑚2𝐾𝐾
 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < 0.22 𝑊𝑊/𝑚𝑚2𝐾𝐾

Insulation Materials:
 EPS (Expanded Polystyrene): 0.024 𝑊𝑊/𝑚𝑚𝐾𝐾
 PIR board (Celotex): 0.019W/𝑚𝑚𝐾𝐾

Walls + 80mm EPS  0.28 𝑊𝑊/𝑚𝑚2𝐾𝐾
Roof + 110mm Celotex  0.17 𝑊𝑊/𝑚𝑚2𝐾𝐾

Surface Material Dimensions 
(m2)

Thickness 
(m)

Conductivity 
(W/mK)

Floor Wood 90 0.03 0.18
Front/Back

Walls Brick 15x5 0.23 1

Side Walls Brick 6x8 0.23 1
Roof `Clay 15x4.25 0.015 0.72

Windows/
Door - - - -

Heat Pump Lay-out

Building Characteristics

 Simulated as 1-zone space
 Total Building Volume:

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗
𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2

 Total Building Area: 
∑ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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Residential & Commercial 
Occupancy Profiles:           

(0 – 8)U(14 – 24) & (8 – 21)

Weather Data

Building Specifications
(Materials, dimensions, parameters) 

&
desired Temperatures

Heat Pump Specifications

Temperature Simulator  
𝑇𝑇 𝑡𝑡 = 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠?

Yes:On No:Off

𝑇𝑇 𝑡𝑡 → 𝑇𝑇 𝑡𝑡 + 1

Hot Water Tank & Space

Electric Consumption P
Heat Rate/Output 𝑄̇𝑄

Temperatures: Hot Water & Space

Note: Heat Pump cannot heat tank and space 
simultaneously: twice per day (morning 06:00 & evening 

19:00) hot water is heated and is given priority

Concept of Heating Model
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𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡 + 1 =
𝑄̇𝑄ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑄̇𝑄ℎ𝑝𝑝 + 𝑄̇𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝐶𝐶𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑉𝑉ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 ∗ ρ𝑎𝑎𝑎𝑎𝑎𝑎

∗ ∆𝑡𝑡 + 𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)

𝐶𝐶 ∗
∆𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
∆𝑡𝑡

̇𝑚𝑚𝑤𝑤 ∗ 𝐶𝐶𝑤𝑤 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ̇𝑚𝑚𝑤𝑤 ∗ 𝐶𝐶𝑤𝑤 ∗ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

Stored heat in the floor neglected for steady state

𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑄̇𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Space Heating (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 35) Hot Water Tank Heating (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 50)

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗
∆𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∆𝑡𝑡

𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 + 1 =
𝑄̇𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑄̇𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑄̇𝑄ℎ𝑝𝑝 − 𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐶𝐶𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐶𝐶𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ ρ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
∗ ∆𝑡𝑡 + 𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)

𝑄̇𝑄ℎ𝑝𝑝

𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �(𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∗ 𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑎𝑎 +

Cair ∗ ρ𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐴𝐴𝐴𝐴𝐻𝐻ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑎𝑎 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐴𝐴𝐴𝐴𝐴𝐴 = 0.35ℎ−1

𝑄̇𝑄ℎ𝑝𝑝(𝑡𝑡) = ̇𝑚𝑚𝑤𝑤 ∗ 𝐶𝐶𝑤𝑤 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

𝑄̇𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
WWR: Window-to-wall ratio (30%) & SHGC: solar heat gain coefficient (20%) 𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ (𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑇𝑇𝑎𝑎)

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1.25 ∗ 65 ∗ (𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 0.7

Heating Model

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2 ∗ 𝑝𝑝𝑝𝑝 ∗ 𝑅𝑅 ∗ 𝐻𝐻 + 2 ∗ 𝑝𝑝𝑝𝑝 ∗ 𝑅𝑅2

𝑄̇𝑄ℎ𝑝𝑝(𝑡𝑡) = ̇𝑚𝑚𝑤𝑤 ∗ 𝐶𝐶𝑤𝑤 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5.98 ∗ 10−4𝑘𝑘𝑘𝑘/(𝐾𝐾𝑚𝑚2)

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.23𝑚𝑚,𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1.3𝑚𝑚

𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)
= 7.90471 ∗ 𝑒𝑒−0.024∗ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡 −𝑇𝑇𝑎𝑎

 Desired 𝑇𝑇𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 21 & Toffhouse = 23
 Mass Flow Rate of Water: 𝑚̇𝑚𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻 = 0.5𝑘𝑘𝑘𝑘/𝑠𝑠

 Every timestep: 𝑻𝑻𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔, 𝑻𝑻𝒂𝒂 𝑸̇𝑸𝒉𝒉𝒉𝒉(𝒕𝒕) (HP 
specs), 𝑸̇𝑸𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒕𝒕), 𝑸̇𝑸𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝒕𝒕) 
𝑻𝑻𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 𝒕𝒕 & 𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒕𝒕)
𝑪𝑪𝑪𝑪𝑪𝑪(𝒕𝒕) 𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕)

Estimated with regression 
from 10 different HP models
“Cooling & Heating COP”

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝑄̇𝑄ℎ𝑝𝑝(𝑡𝑡)/𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝑄̇𝑄ℎ𝑝𝑝(𝑡𝑡)/𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)

𝑄̇𝑄ℎ𝑝𝑝(𝑡𝑡) = 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑓𝑓 − 𝑇𝑇ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡 )
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Heating Model Results
Occupancy, HP ON-OFF Temperature & Building Temperature

Building Temperature and ON-OFF operation (winter week)
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Heating Model Results
Occupancy, HP ON-OFF Temperature & Building Temperature

Building Temperature and ON-OFF operation (summer week)
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Heating Model Results
Weekly water & space-heating COP vs ambient Temperature

HP Heating COPs vs ambient Temperature (winter week)
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Heating Model Results
Weekly water & space-heating COP vs ambient Temperature

HP Cooling COPs vs ambient Temperature (summer week)
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Heating Model Results
HP Power Consumption vs ambient Temperature

HP Heating Consumption vs ambient Temperature (winter week)
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Heating Model Cooling Results
HP Power Consumption vs ambient Temperature

HP Cooling Consumption vs ambient Temperature (summer week)
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Appendix B: Some more Grid Impact 
Results



71

Transformer Loading (3)

Total Overloading Duration & Overloading DMP 
at 100% combined LCT Penetrations per Distribution Grid
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Lines Loading (1)

Lines Maximum Loading at 50, 80 & 100% combined LCTs penetrations
And number of over-loaded Lines at 100% per Distribution Grid 
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Lines Loading (2)

Overall Lines Over-loading DMP and Time at 100% HP & EV 
penetration at the 3 most vulnerable Distribution Grids
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Nodes Voltage Deviation (1)

Nodes min Winter Undervoltage & max Summer Overvoltage 
at 50, 80 & 100% combined LCTs penetrations

And number of violated Nodes at 100% per Distribution Grid 
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Nodes Voltage Deviation (2)

Under-Voltage Magnitude and Number of Violated Nodes 
at 50% & 100% HP and EV penetrations
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