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Abstract

In the age of the Internet of Things (IoT)
emerging, distributed systems are becoming
more and more mainstream and relevant, and
so are novel programming languages. Tradi-
tionally distributed systems, like anything else,
have been built from the ground up, tailored
for their intended application. However, any-
thing distributed is complex by nature, in stark
contrast to what some novel programming lan-
guages aim to simplify. By means of a literature
review, comparing the languages EdgeC, Dis-
tributed Oz, and OpenABL, insight is gathered
about whether novel programming languages,
intended for distributed applications, are actu-
ally meaningful in the relation to loT-scale dis-
tributed systems, answering the main question
“reliable execution of programs for distributed
systems: are programming languages tailored
for distributed applications beneficial in devel-
opment of such programs?”. Primarily Dis-
tributed Oz, but also EdgeC stand out in their
capabilities. OpenABL on the other hand ap-
pears to be less flexible, due to its niche-limited
agent-based model. Overall however, these new
programming languages appear promising.

1 Introduction

Every day, more and more devices are getting con-
nected, and the end is not yet in sight. The Internet of
Things (IoT) is most prevalent in this area [1]. Often,
these devices need to communicate among each other,
in order to achieve some task that they would not be
able to perform on their own. For example, an actuator
device that can be triggered by another device (which
produces events) that is physically separated, but con-
nected through a network.

This is a trivial example, but more complex situa-
tions will arise when more devices come into play and
depend on each other’s state and events. This natu-
rally gives rise to many questions, e.g. regarding syn-
chronization, consistency and speed. Important to note
is that for these systems network reachability is key to
successful operation (because of the shared state they
inherently operate on), and as such they are often not
fully partition-tolerant, but merely to some extent (de-
pending on many factors). In practice however, we see
[2] that network failures are unavoidable, so distributed
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applications have to take this crucial factor into consid-
eration.

Well-known is the fact that new programming lan-
guages are being developed all the time. Some of these
are introduced by academics, others arise from enter-
prise activities and some are mostly community-driven.
No new programming language is truly general; there
always exist trade-offs because choices have to be made.
Some of these languages are specifically designed for ap-
plication in distributed systems. These are the kind of
languages that are discussed in this article.

There are two notable industry-standard program-
ming languages in this field: Erlang/OTP [3] and Elixir
[4]. Elixir builds upon Erlang, but is more modernized
and has a different feature set. Both languages have
existed for numerous years, and are still very general in
nature.

In this article, the focus lies on programming lan-
guages that are even less general, and more specific.
Some of these languages are domain-specific languages
(DSLs) [5, |6l |7, 18], which are developed with a very
specific goal in mind. Namely, a specific domain of ap-
plication, e.g. in the field of network routing appliances
[9]. This is a popular field of study, and research aiding
the development of such languages has been active in
recent years too [10, (11} [12].

A middle ground between the two extremes of DSLs
and general-purpose languages are the programming
languages that should still be considered general, but
that are developed with the mindset of sole applica-
tion to distributed applications. General-purpose lan-
guages are considered to be languages of the likes of
C** and Java. From reviewing the literature, the lan-
guages EdgeC [13|, Distributed Oz [14] and OpenABL
[15] are considered in the remaining part of this article.
These languages do not classify themselves as DSLs,
but their designs are in fact tailored to software for dis-
tributed systems.

Considering the fact that from a high-level overview
there are already three identifiable classes of program-
ming languages, and that distributed applications are
complex by nature, the question rises whether non-
general-purpose programming languages may be ben-
eficial. Besides this, focus is lied upon reliability of
such programs, which could be defined as ‘the program
always makes the correct decision and will never make
a decision based on too little information’. As briefly
stated earlier, and explained in more detail in section 2]



this is a crucial for IoT-related applications. Thus the
main question of this literature review becomes: Reli-
able execution of programs for distributed systems: are
programming languages tailored for distributed applica-
tions beneficial in development of such programs?

2 The Problem

The problem described in the introduction is merely a
trivial example. In this section, a more complex case
is considered which is both in words and visually ex-
plained. For those wanting to get more of a feel for the
problem and possible implementations: how this par-
ticular case might be implemented naively is discussed
in section [3

2.1 Key Concepts and Assumptions

Before describing the problem as a small story, some
key concepts are important to know and so are the un-
derlying assumptions. The following description list de-
scribes these different aspects.

physical device — A physical device that is capa-
ble of one or more of the following: mechanically
switching state (e.g. on/off) or taking a snap-
shot measurement (e.g. relative humidity, amount
of people counted on surveillance camera). In
practice, such a device may delegate commands
to other physical devices, but this must happen
transparently and as such whether or not that
happens in practice is not relevant.

edge device — A logical device that is located at an
‘edge location’, capable of interacting with an ex-
clusive set of physical devices. Edge devices are
strictly interconnected via a LAN and/or the In-
ternet.

For the sake of keeping the scope limited, assume
that, whenever some edge device can reach an-
other edge device across the network, all physical
devices attached to the edge device are available
and functioning correctly.

action — One of Read, Write or Update. An action is a
command sent to a physical device (Read, Write),
or an event produced by a physical device (Up-
date). Read and Write actions are initiated by
the program. The program may listen for Update
actions, but does need not do this. Updates that
are not listened to by anybody are discarded.

cluster — The logical network of edge device, being
interconnected via LAN and/or the Internet.

2.2 Problem Story

Assume there exist (at least) four edge devices, three of
which exist together in a LAN. The other edge device is
distantly separated and is only connected through the
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Internet, together forming a cluster. Each edge device
has at least one physical device.

The task of this cluster of edge devices is now to
evaluate logic atop of the state of their physical de-
vices. Examples of such rules are, one simple and one
more involved:

e If device x measures a value of at least 10, then
set the value of device y to on.

o If the average value of device = (e.g. of the last
60 minutes) is above the current value of device
y, then set the value of device z to the measured
value from y.

The most important guarantee that the system must
fulfill is reliable (consistent) execution. That means
that each action must only be taken if there is 100%
confidence in doing so, and therefore it should not be
incorrect in hindsight. Not fulfilling this could be detri-
mental to mission-critical IoT applications. Other mis-
cellaneous non-required wishes for such a system could
be that introducing a new edge device is seamless and
can happen dynamically.

The problem is visualized in figure[l} Here EDz rep-
resent the four edge devices. Physical devices are not
drawn, but assume that each edge device EDz has some
associated. Because EDO through ED2 are connected
to the same router, they participate in the same LAN.
Edge locations A and B together form the cluster.

3 Naive Approaches

In order to get an idea of how the problem described
in section [2] might be solved in practice, when only
generic programming languages are used, three naive
approaches will be described next. Of course, even with
enough time and knowledge, an efficient and reliable
implementation can be made, but this functions merely
do demonstrate the point that it is not impossible to
achieve the goal with the ‘traditional’, general-purpose
programming languages. Note that these approaches
may not all have been implemented in practice, and
are partially derived from personal experience of the
author.

Of each of the approaches, the downsides are men-
tioned, but also why one might implement a system that
way. This may give an indication as to which problems
arise when searching for a non-trivial solution. Please
be warned that this is not the way to go for real-world
applications.

3.1 Approach #1: on-demand synchro-
nization

This approach functions around a central message bro-
ker to which all edge devices connect. Implementation
details of such a broker is not relevant. The only re-
quirement is that it guarantees delivery and supports
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Figure 1: The problem visualized

message retaining. In practice AMQPEL MQTTH and
ZeroMQ are often deployed |16}, {17} |18] [19].

If-Then-Else (IfE) logic, pure conditional program-
ming, lends itself easily to this approach, because it is a
very constrained yet highly structured way of express-
ing basic logic. However, IfE logic has no state, not even
local; the only state exists implicitly in the devices.

A study closely related to this subject [20] describes
a similar approach, with a proprietary implementation,
based around the idea of sinks, sources and IfE-rules.
They instead evaluate the logic not on the edge devices
but on a centralized back-end. This shifts even more
responsibility to the cloud and makes it practically im-
possible, with the exception of on-premises deployment,
to use this implementation in isolation of the Internet.

Each edge device receives the full program and
starts executing their responsible part. How it is deter-
mined which edge device is responsible for which part
of the program does theoretically not matter, but in
practice one may select the edge device which is able to
execute as much of that part of the program without
having to make requests to the message broker. Then
at any time input is expected, be it an explicit Read
request or a wait for Update, or output is to be writ-
ten (Write), the responsible edge device is invoked via
the broker. The broker will either respond with a re-
tained message or a fresh response in case the target
edge device processed the request.

This approach does not guarantee consistent exe-
cution, but that is not straightforwardly obvious and
is quite subtle. Primarily the assignment of responsi-
ble edge device is problematic. A program consists of
multiple parts which are not explicitly tied together,
but only by means of a particular Read- Write (or Up-
date) link. Some edge device E; may contain parts of
the program that are fully executable locally, whereas
a second edge device Fy may contain parts for which
it needs to communicate with E;. If at some point Fy
needs to make a decision based on a value from FEy, a
dirty read or write operation may occur if F; is actively
performing local Read and Write actions.

3.2 Approach #2: strict replication

Perhaps the easiest solution to solving the problem de-
scribed in the preceding section, is by means of strict
program replication. On each of the edge devices, the
same program will run, and all edge devices share the
same state of execution, and they all agree on each step
of the execution. The execution state consists of for

example registers, the stack and the heap.

Only when either a Read or Write action is to be
performed, the capable edge device will perform this
action and publish the result to the cluster. Once the
entire cluster agrees on the execution of the action, nor-
mal program execution may continue.

This approach is not dependent on the language in
which the program is developed, as long as there ex-
ists some run-time mechanism that implements this ap-
proach. Because any general-purpose language suffices,
some additional effort ought to be put into developing
a library for that language that is used to express the
R/ W actions. The implementation of that can be del-
egated to the edge device run-time that participates in
the cluster synchronization.

The three downsides of this approach are very sig-
nificant. First of all, it has a rather high network traffic
overhead, because at each step during the execution, all
edge devices need to know of each other that they agree
on the next state of the program. Even though this
gives a very strong consistency guarantee, usually this
scales in the order of O(n?). Therefore, secondly, this
model is inherently 100% unable to cope with network
failures, as this makes the full synchronization impos-
sible. Lastly, this model also suffers from any latency
in the network, since the time it takes to synchronize
the cluster on each step takes at least twice the largest
round-trip time of any two edge devices.

3.3 Approach #3:
execution

leader-based single

Single execution using a leader-based approach is a
slight variation on the preceding approach. This ap-
proach is inherently fault-tolerant to some degree, but
theoretically also less efficient.

As in approach #2; all edge device participate in
a cluster. However, instead of distributing the pro-
gram to all edge devices and executing simultaneously,
only one edge device is appointed to run the program.
This is achieved by performing a leader election using
a consensus algorithm like Raft [21] or Paxos [22]. The
leader executes the program and communicates with
the appropriate edge device where actions need to be
performed.

Even though there is now a single executor, all other
edge devices are always on the outlook for failures and
when for example the leader is not reachable anymore.
A new leader can be appointed and execution can con-
tinue from the last known safe execution point. Such a



point is known, because the leader continuously informs
its followers of the progress.

4 Method

To conduct this literature review, publications were
gathered by searching through the TU Delft library,
about ‘programming languages for distributed systems’
in the broadest sense. During the search, the keyword
‘aspect-oriented’ was once used in conjunction with the
primary search input, which lead to EdgeC. The re-
sults were not explicitly sorted by publication date, but
on relevance judged by the library system. Then three
publications |13}, |14} [15] were filtered out that described
an actual language, their implementation, and, most
importantly, were strongly related to distributed sys-
tems.

Of each of these languages, the focus was determined
and key ideas were analyzed. Then for each of them, a
conclusion can be drawn to which extent it is capable
of solving the described problem. Combined together,
a final conclusion can be drawn.

5 Programming Languages For
Distributed Systems

Having discussed a problem and some possible, albeit
naive, approaches to solving this problem, a selection
of programming languages for distributed applications
is now discussed. These programming languages are,
when compared to the sketched problem, quite general
of shape.

Each of the following sections discusses one of the
programming languages. The language’s key points are
first summarized, including explanations of terminol-
ogy specific to that language, followed by an analysis
which elements the language provides that are useful
and which elements it lacks. Finally, the language’s
expressiveness and features are related to the problem
from section 2l These observations are summarized in
table 1.

5.1 EdgeC

EdgeC, derived as an anagram of ‘event-driven dis-
tributed global-view consistent executions’, is a novel
language that allows for distributed application-specific
reasoning, building this all around the concept of
aspect-oriented programming |13]. The idea of applying
the paradigm of aspect-oriented programming to dis-
tributed software has already been explored from time
to time before [23| |24]. Syntax-wise it is inspired by
Scala.

EdgeC by default internally builds on the fundamen-
tals of the actor-based architecture. Key to the EdgeC
language is the separation of concerns regarding con-
crete application logic and the distributed nature of a

3Message Queuing Telemetry Transport

program. This means that a developer that is respon-
sible for business/application logic can write in EdgeC
almost without having to worry about the distributed
nature.

Even though the running example used in the EdgeC
paper considers a game server/client scenario, it does
translate to the problem of driving conditional logic.
Each edge device can be represented as a node, bearing
some metadata. EdgeC especially excells in the abil-
ity to precisely indicate on which particular node some
logic should be executed, or on which node state should
be stored. Inherent to the DSL is a triggering system,
which suits the Update action.

Unfortunately, this authors of EdgeC do not con-
sider fault-tolerance at all. However, the EdgeC paper
does dedicate a subsection to consistency. Most impor-
tantly, by design, the language compiler will analyze the
program and critical points are determined (consistency
analysis). Even MQT’[EL popular in the world of IoT, is
mentioned and considered suitable for inter-edge device
communication; the EdgeC system implements a mech-
anism that guarantees reordering. Secondly, the lan-
guage optimizes for the consistency guarantee to some
degree, as to not perform as bad as typical consistency
protocol implementations. The authors consider this of
high importance, especially for the applications of edge
computing. Lastly, but separate from the consistency,
EdgeC supports replication to some degree, which can
be indicated explicitly, but is managed implicitly.

5.2 Distributed Oz

Oz, and historically one of the first real-world program-
ming languages for distributed systems, Distributed Oz
[14], are concurrent object-oriented programming lan-
guages. They enables the programmer to express many
facets of software for distributed systems in a uniform
and logical way. Distributed Oz is semantically similar
to Oz, but it extends the syntax to provide constructs
which can be used to express facets of a distributed pro-
gram with failure detection. Even though Oz is concur-
rent, that does not say anything about suitability for
distributed systems. Distributed Oz still makes use of
the concurrent model to exploit parallelism on a ma-
chine, but adds functionality to make it suitable for
distributed systems.

Internally Oz is built around a concurrent constraint
computation model, this most notably means that ex-
ecution order is not linear. The authors therefore also
suggest that Oz can be seen as a successor to Prolog.

In contrast to EdgeC, Distributed Oz dedicates ex-
tensive effort to fault-tolerance and failure detection.
The authors of Distributed Oz do not describe any
means of automatic adaptation to a failure scenario.
They only account for failures that either exist perma-
nently, causing the program, or parts of the program,
to stop execution prematurely, and failures that may
fully recover, such as temporary network unavailability.
However, this may in practice actually not be a problem
as only the part of the program that is interconnected



EdgeC |[13] Distributed Oz |14] OpenABL |[15]
architecture basis | aspects and actors concurrent constraints agents

compilation targets | Java bytecode Oz multi-backend source-

to-source
primary development goal | edge computing; sepa- separate functionality distributed agent

rating concerns from distribution modelling

structure

considers fault-tolerance? | partially, through con- yes, first-class support no; irrelevant due to

sistency guarantees

the immutable archi-

tecture
other highlights | ability = to express elaborate algorithm immutable state,
where code runs analyses transition-based
suitable for the problem | good; reasonably  very well insufficient;  requires
fault-tolerant too many drastic
adaptations

Table 1: Different programming languages for distributed applications summarized

with a failing site fails. If site B fails, and is connected
to site A, site A does not fail, only a subset of its nodes
that were actually connected to B fail and propagate
the failure to nodes they are in turn connected to.

The paper describes some of the algorithms used
to implement features extensively. KEach aspect that
Distributed Oz introduces on top of Oz is covered and
illustrated with examples. The distributed execution
model is what the authors describe as a distribution
graph. The way manager nodes are key to the operation
of a program may appear to be a significant weakness of
Distributed Oz. As the access structure only consists of
the minimal required amount of nodes, this will not be
a problem in practice. Since only the necessary nodes
are connected, if any node, even the managing node,
fails, the entire program would need to enter an invalid
state anyways.

5.3 OpenABL

OpenABL is “a domain-specific language designed
for portable, high-performance, parallel agent model-
ing” |15]. The language is designed to model agent-
based simulations, which is significantly different from
the more general-purpose mindset of EdgeC and Dis-
tributed Oz. An ‘agent’ is not defined to be anything
special in particular, but it is usually used to represent
some ‘thing’ that can perform actions by transitioning
from one state to the other. The paper mentions tradi-
tional examples of predator-prey models and Conway’s
Game of Life.

This agent-based model does not straightforwardly
translate to the described problem. Due to the atomic
step nature of OpenABL centered around a master
node, no intricate consistency management is required,
or it is offloaded to the run-time platform. There ap-
pears to be no way to express the explicit relation be-
tween edge devices and physical devices in OpenABL.
Both can be modeled as a separate agent type, but it
is impossible to express computation constraints. Al-
though, it is likely not hard to modify the run-time to
account for this.

However, OpenABL explicitly focuses on locality

based on Euclidean coordinates. The agents for each
edge device are created at an integer position with at
least two units of space in between. Each physical de-
vice is mapped to an agent that is positioned at most
one unit away from the edge device agent to which it
belongs. Now the step function for each device shall
only interact with agents that are in proximity of a ra-
dius of one distance unit. This should, but is not guar-
anteed to, cause the OpenABL run-time to ensure that
operations on physical devices and edge devices happen
mostly on the same worker node.

Even though the problem of this article can be
adapted to the OpenABL execution model, it is not
possible to do that with the default OpenABL imple-
mentation. There are two key aspects of the OpenABL
implementation that need to be changed significantly:
First of all the agent state must be hookable for a dif-
ferent run-time system that can perform the physical
actions. Secondly, OpenABL works on the assumption
that the model is simulated in finite time followed by
persisting the final agent state. However, for our pur-
poses, the run-time would need to simulate the agents
indefinitely.

All these changes together are quite dramatic, and
result in a significantly different variant of OpenABL
than its original authors intended. Even though it ap-
pears feasible to implement these necessary tweaks, it
is still invasive and appears hacky. The OpenABL lan-
guage therefore is more applicable to other problems.

6 Conclusion

This literature review aimed to research how program-
ming languages tailored for distributed applications
might be beneficial in reliable (consistent) execution
of programs for distributed systems. Each of the lan-
guages Distributed Oz [14], EdgeC [13] and OpenABL
[15] has been explored, their key ideas were discussed
and a connection to the problem of driving IoT device
interaction logic in a cluster formation.

Now it is not the question which language is ‘best’,
but from the three chosen languages, Distributed Oz ap-



pears to be the most powerful and well-explained and
easiest to relate to the problem, standing out because
of its dedication to fault-tolerance. EdgeC is mostly on
the same line, but lacks constructs for explicit fault-
tolerance. OpenABL on the other hand appears to be
not really fit for this purpose, purely because significant
modifications to the existing implementation would be
required in order to morph the problem onto the agent
model that OpenABL is intended to be used for. These
modifications go so far that it is fair to say that they
are merely hacks which are not desirable.

All three of the languages enable programmers to
express their problem in a significantly more concise
way, because of the new constructs they introduce. This
reduces both visual and mental complexity of the soft-
ware, as it partially abstracts away implementation de-
tails of the underlying hardware and network. Yet,
the programmer still has, albeit somewhat limited, con-
trol over the specific aspects of the distributed nature.
Especially compared to traditional naive approaches
that a non-knowledgeable developer might take using
a general-purpose language, these novel programming
languages appear promising and should be seen excel-
lently suitable for the task.
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