
The evolution of search algorithms over time
Renāts Jurševskis

Delft University of Technology
Delft, Netherlands

R.Jursevskis@student.tudelft.nl

Tudor Octavian Pocola
Delft University of Technology

Delft, Netherlands
T.O.Pocola@student.tudelft.nl

Abstract—The field of search algorithms has changed dras-
tically in the past few decades. Modern search algorithms are
solving completely different problems than just twenty years
ago. This paper analyzes the factors that caused this shift and
determines which innovations could affect the field in the future.
To achieve this, some of the best-known search algorithms and
techniques are compared and analyzed. The innovations in other
industries have had a large impact on search algorithms by
introducing new problems and expanding the scope of the field.
Most notably, modern search engines have brought attention
to the problem of optimally sorting search results and have
inspired to apply innovations from various other fields like
AI and big data. In addition, the future of search algorithms
looks very encouraging, as artificial intelligence and quantum
computing promise to improve the field even further. Therefore,
we can conclude that instead of being caused by the exhaustion
of classical methods, the evolution of search algorithms has
originated from advancements in various other industries.

Index Terms—search, search algorithm, search engine, pattern
matching, search tree, informed search, uninformed search

I. INTRODUCTION

We, as humans, have had the need for efficiently searching
through an archive ever since we started keeping records in
ancient Egypt. Think about how you would store hundreds of
records in order to have easy access to any of them later. These
records need to be stored and indexed to allow for efficiently
searching through them. This problem was inherited by our
computers when we started moving records onto them.

The field of search algorithms is a well-researched field
with an extensive history [1] that started in mathematics but
has grown rapidly since the invention of computers. It started
modestly, with simple algorithms such as linear and binary
search, but it grew swiftly and soon included such algorithms
as depth-first search, iterative deepening search, steepest hill
climbing, and A*.

This all changed with the advent of the internet when search
algorithms became much more integrated into people’s daily
lives. So much so, that in today’s world, most people think
about a search engine when they hear the word ”search”,
as this is the most relevant use of search algorithms at the
moment. It is no wonder then, that the field has become much
more relevant today than it ever was. This can be observed by
looking at the interest tech giants like Google, Amazon and
Microsoft are taking in the field.

Google was launched in 1998, so one would expect that
they should have already found an optimal solution but, if
we take a look at the history of search algorithms used in

Google Search [3], we can clearly see that the algorithms that
are being used are changing constantly. However, if we take
a look at some of the recent updates, we can clearly see that
the problem these algorithms are trying to solve strays further
and further away from the original problem - that of finding
records in an archive:

- “Hummingbird” - lays the groundwork for voice-enabled
search;

- “RankBrain” - machine learning algorithm that can make
guesses about unknown words, and replace them;

- “BERT” (Bidirectional Encoder Representations from
Transformers) - a neural network for natural language pro-
cessing that can figure out the context of a word by looking
at the previous and following words.

Furthermore, it is hard to call these algorithms ”search
algorithms”, since they solve a totally different task (speech
recognition, natural language processing, etc.). So one might
wonder if this shift in new algorithms might reflect the fact that
we have exhausted all classical methods of search algorithms
and we are now forced to look in directions other than
pure algorithms or rather, the fact that new technological
possibilities are opening new directions for this field.

The main goal of this paper is to analyze the extent to which
we have exhausted the search algorithms available to us and
determine which factors have contributed to the evolution of
the field. To achieve this, we need to address the following
questions:

1) Which important breakthroughs have modeled the field?
2) In what ways have search engines affected the develop-

ment of search algorithms?
3) What developments can we expect in the future?
Each following section will tackle one of the aforemen-

tioned questions. Section “III. Classical search algorithms”
will answer the first question by giving an overview of all
the classical approaches of search algorithms that are already
well defined in computer science. Section “IV. Modern Search
Engines” will answer the second question by presenting the
new search problems caused by the increasing popularity of
the internet and how search engines have managed to solve
them. Section “V. Future of Search” will answer the third and
final question by presenting the extent to which there are new
search algorithms to be discovered.

However, before answering these questions, we will first
take a look at the materials and methodology used in our
research.

TABLE I
A COMPARISON BETWEEN VARIOUS GRAPH SEARCH ALGORITHMS USING BIG-O NOTATION

Algorithm Time Complexity Space Complexity Completeness Optimality
Breadth-First Search O(|V |+ |E|) O(|V |) + +
Depth-First Search O(|V |+ |E|) O(h) - -

Iterative Deepening Depth-First Search O(bd) O(d) + -
Uniform Cost Search O(b1+

d
ε) O(|V |) + +

Greedy Best First Search O(bh) O(bh) - -
Hill Climbing N / A∗ O(1) - -

The notation used: |V | - the number of vertices in the tree, |E| - the number of edges in the tree, h - maximum depth of the tree, b - branching factor,
d - depth of the shallowest solution, ε - minimum cost of a node
∗The notion of time complexity is not applicable to hill climbing, as it can be run for an infinite amount of time

II. MATERIALS AND METHODS

In order to perform the literature review, it was necessary
to research the topic by finding relevant sources. To perform
this search, we used the TU Delft Library, Google Scholar,
and such bibliographic databases as Scopus and Mendeley.

Search terms like “Search Algorithm”, “Graph Search”,
and “Pattern Matching” were used in order to get a general
overview of the topic. Then, to get a deeper understanding of
the algorithms used by search engines, we searched for arti-
cles using search terms “PageRank”, “Topic-sensitive search”,
“Search personalization”, “Mobile-friendly search”, “Google
Hummingbird”. Finally, we explored the future of search
algorithms by using such search terms as “Future of Search”,
“AI Search Algorithm”, “Image search”, and “Quantum Search
Algorithm”.

Initially, a list of candidate sources was created by searching
for the aforementioned terms. After that, the list was reviewed
in order to select the best and most relevant sources by
analyzing the title and the abstract of the source. In order
to choose reputable sources, we attempted to mainly use peer-
reviewed articles. However, when no such sources could be
found, book chapters and technical reports were used. In
addition, we primarily chose sources that were cited in other
articles. Sources that contained obvious inaccuracies or many
spelling errors were excluded.

III. CLASSICAL SEARCH ALGORITHMS

As our computer memory grew larger and larger, we started
storing more and more data on it, so the time it took to
run a query on the data naturally increased, so, the need for
more efficient search algorithms appeared. The way this was
achieved at the beginning (and still is achieved today for some
cases), was by representing the data as a search tree, where
different pieces of information are modeled as nodes, and the
relations between these pieces are modeled as edges [27].

One such tree is depicted in Fig. 1, where the start node
is labeled with an S and the target node (i.e. the node
containing the piece of information we want to retrieve) with
T. The problem now becomes that of traversing the search tree
efficiently using various algorithms. From the very beginning,
scientists have identified two possible types of solutions to this
problem: uninformed search and informed search [14].

Uninformed search is a brute force method that blindly
considers all options or paths without knowing or assuming
anything about the data. Uninformed searching techniques
include algorithms such as Depth-First and Breadth-First
Search, Iterative Deepening, Bidirectional Search, Uniform
Cost Search but also many others.

On the other hand, informed search (sometimes called
heuristic search) makes assumptions about the data using
heuristics to model a heuristic function that gives some in-
sight into the current state of the algorithm. This heuristic
function can be used to choose the optimal path (as opposed
to traversing all paths blindly). Informed search techniques
include algorithms such as (steepest) hill climbing, A*, AO*,
and Greedy Best First Algorithm, but not limited to.

Another category of search algorithms that exists is pattern
matching. This class consists of algorithms for finding a
pattern (usually text) inside a given sequence. The pattern-
match algorithms are most commonly used to find a substring
within another string. Some of the best-known pattern match-
ing algorithms are Naive Pattern Matching, Knuth-Morris-Pratt
algorithm, Rabin-Karp algorithm, Finite Automata, and Aho-
Corasick.

In the following subsections, we will take a look at the
following algorithms with the goal of understanding them
better:

• A. Uninformed search algorithms - Breadth-First Search,
Depth-First Search, Iterative Deepening Depth-first
Search, and Uniform Cost Search;

• B. Informed search algorithms - Greedy Best First Search
and Hill Climbing;

• C. Pattern matching algorithms - Naive Pattern Search,
Knuth-Morris-Pratt and Aho-Corasick;

Note that we will not analyze the algorithms in-depth, as
extensive research is already available [2], [14], [26], [27].
However, we include a quick comparison in Table I that
mentions their time and space complexity, and also if the
algorithm is complete (does it guarantee the correct answer)
or optimal.

A. Uninformed Search Algorithms

1) Breadth-First Search: Holdsworth states that: “Breadth-
First Search (BFS) is one of the oldest and most fundamental

2

Fig. 1. A representation of a search tree, where node S denotes the starting
node, and node T denotes the target node.

graph traversal algorithms, influencing many other graph al-
gorithms” [15, p. 1]. It should not come as a surprise that BFS
can also be used to search through a search tree.

BFS starts by adding the start node (root) into a first in first
out (FIFO) queue and marking it as visited. Then, as long
as the queue is not empty, the algorithm removes the first
element in the queue, adds all its unvisited neighbors in the
queue, and will mark them as visited. This will result in the
whole traversal of the tree, where the nodes are traversed in
the order of their level [23]. The order in which we traverse
the search tree in figure 1 is S, A, B, C, D, E, F, G, H, I, J, K,
L, T. As the name suggests, we traverse the tree in its width
first. The time complexity of this algorithm is linear, as we
visit each node at most once.

2) Depth-First Search: The only difference between BFS
and Depth-First Search (DFS) is that DFS uses a first in last
out (FILO) queue. This results in a different tree traversal, one
in which we first traverse a path until the leaf node (the leaf
nodes in figure 1 are: I, J, K, L, T, and H) before starting with
another path. The order in which we traverse the search tree
in figure 1 is S, A, D, I, E, J, B, F, K, G, L, T, C, H. As can be
seen, we traverse the tree from top to bottom, instead of left
to right like in BFS. The time complexity of this algorithm is
also linear since we need to visit every node at most once.

These two techniques (BFS and DFS) blindly traverse the
tree, without making any assumptions about the data. This
is great if we do not know for sure if the desired piece of
information is contained in our search graph. DFS always
follows the first path it finds until the end, so it finds nodes
that are not in the first sub-tree very late. BFS goes level by
level but requires more space complexity for the queue. The
space complexity of DFS is the maximum height of the tree
and that of BFS is the total number of nodes (in the worse
case, they are equal).

3) Iterative Deepening Depth-First search: Iterative deep-
ening search (IDS), or more formally iterative deepening
depth-first search (IDDFS) is a hybridization of the 2 al-

gorithms discussed above, combining the space-efficiency of
DFS and the early traversal of nodes close to the root of BFS.
This algorithm works well on graphs that have infinite depth,
but a finite branching factor (the number of child nodes per
node). In addition, IDDFS is usually used on search trees that
have a high branching factor (nodes have a lot of children, so
the next level has much more nodes than the previous level).

The idea behind IDDFS is to set a maximum depth for DFS
and not let it run beyond this given depth. If the goal node is
not found, all the calculations are discarded and the maximum
depth is increased. The order in which the nodes are visited is
that of DFS, but the order in which the nodes are first visited
is that of BFS. The order in which traverse the search tree in
figure 1 is the following: S, S, A, B, C, S, A, D, E, B, F, G,
C, H, S, A, D, I, E, J, B, F, K, G, L, T, C, H. As can be seen,
the main drawback of IDDFS is that it repeats all the work
that is done in a previous phase [30].

4) Uniform Cost Search: Uniform Cost Search (UCS)
is an iteration of Dijkstra’s algorithm that is used for very
large (possibly infinite) graphs that can not be represented in
memory. In UCS, we start by adding just the start node into
the set of open nodes. This set contains the node as the key and
its cost as the value. For each subsequent cycle, we expand the
least expensive node. Furthermore, we do not insert duplicates
into the queue, instead we decrease the value for a specific key
if it is necessary (the new value is smaller than the old one).
[29].

B. Informed Search Algorithms

1) Greedy Best First Search: Both DFS and BFS explore
all possible nodes at any given state. The main idea behind
Greedy Best First Search (GBFS) is to use a heuristic function
to expand just the most desirable paths. The desirability of
a path is measured using the heuristic function. The GBFS
keeps track of two sets: closed nodes and open nodes. The
set of closed nodes consists of all the nodes that have already
been expanded, while the set of open nodes contains all the
nodes that still need expansion. At every step of the algorithm,
the node with the best value (based on the heuristic function)
is chosen from the open set to be expanded. The algorithm
finishes after expanding the target node. The heuristic function
differs from case to case, so the order in which we traverse the
tree differs based on the heuristic function that is used [26],
[27].

2) Hill Climbing: Hill Climbing is a special kind of
heuristic search used for optimizing mathematical problems,
that would be otherwise impossible to solve. The main idea
behind this algorithm is to try to find the global extreme of
a function as fast as possible. This is achieved by setting an
initial step. It is most often used in artificial intelligence. In
the case of a search tree, Hill Climbing starts by expanding
the start node first, and then it keeps expanding just the best
node of the previously expanded nodes (modeled by a heuristic
function). The Hill Climbing algorithm is very fast, but it can
get stuck at a local extreme instead of finding the global one
[26], [27].

3

C. Pattern Matching

1) Naive Pattern Search: Naive Pattern Search, as the
name suggests, is the brute force idea that comes to mind
when solving a pattern matching problem. That idea is to slide
the pattern over the text and check for each position if the
pattern matches the text at that given location. This is a basic
approach, therefore, it creates a lot of overhead, as we need to
compare every character from the text with every character of
the pattern. The time complexity of this algorithm is given by
the length of the text multiplied by the length of the pattern,
as we need to start a comparison from every position in the
text, each of which will require a traversal over the pattern.
Due to its slow running time, this algorithm is often not used
in applications where the text is long, but its simplicity is very
appealing when the application needs to deal with only small
strings [25].

2) Knuth-Morris-Pratt (KMP) algorithm: KMP builds on
the idea of Naive Pattern Search by using the fact that when
we find a mismatch between the pattern and the text, we
have already gone over some of the characters in the next
comparison, so we can skip some of the previously matched
characters. The amount of characters we can skip at any
given step is given by a heuristic function. This heuristic
function is computed by calculating the longest proper prefix
which is also a suffix. This needs to be pre-computed before
we start the actual pattern matching as we need the whole
heuristic function in order to skip characters. This was the
first algorithm that solved the pattern matching problem in
linear time. [25].

3) Aho-Corasick: There might be a case, where we want
to find multiple patterns in a text. A real-world example of
this would be to search words from a dictionary within any
given text. If we use any of the algorithms mentioned above,
we would need to run them independently for each pattern.
This algorithm tackles this exact problem, as it enables us to
search for multiple patterns in the same text efficiently. The
main idea of this algorithm is to build a trie (prefix tree), and
then to extend this trie to an automaton. Then we use this
automaton to check the whole text [23]. The time complexity
of this algorithm is given by the length of the text plus the
number of characters in the dictionary plus the number of
matches.

IV. MODERN SEARCH ENGINES

Due to the rising popularity of the internet, the need for
efficient search algorithms has gained a lot of attention.
Search engines have become an integral component of the
internet, so they have motivated large-scale investments into
the research of search algorithm optimization. However, the
search algorithms used in search engines are not a direct match
to the algorithms discussed before as they usually consist of
two separate parts. To complete a search query, we need to
not only find which web pages are relevant to the query, but
also sort them based on their importance. Therefore, in order
to develop efficient search engines, it has been necessary to
discover new techniques for ordering web pages.

The backbone of most modern search engines is PageRank –
an algorithm for ranking web pages based on their importance.
It was initially developed by the founders of Google, L. Page
and S. Brin, as a research project at Stanford University and
later used as a foundation in the development of the Google
search engine [4]. It models the internet as a graph consisting
of nodes and links as can be seen in figure 2. Each web page
can be thought of as a node, while each hyperlink that leads
to another page is modeled as a link. Then, the importance
of a page is directly dependent on the importance of other
pages that link to it. Therefore, everything that is linked from
an important page can also be considered important. This
structure can also be compared to the concept of citations in
scientific literature [5].

Fig. 2. A simplistic visualization of the PageRank graph. The size of the
nodes represent the PageRank value of each website while the width of the
links denotes the amount of PageRank score transferred to another page.

Once the PageRank scores have been computed, we still
need to determine which pages will be included in the search
results. A very basic approach directly matches the words
given in the query with the content of each web page using
pattern matching. This algorithm already works quite well,
however, it also has its limitations. By directly looking at
the content of the web page, this approach is susceptible to
keyword stuffing – a practice of including irrelevant keywords
in order to manipulate a website’s ranking [6]. In addition, a
direct interpretation of the query does not attempt to under-
stand the context of the search.

Ever since the original creation of the PageRank algorithm,
research has been focused on extending and improving it [3]
[12]. Each modern search engine offers its own algorithmic
solutions, however, such new features as topic-sensitive search,
platform-specific ranking, and search personalization are al-
most always applied in order to improve the accuracy of the
search results. For example, since the creation of PageRank,
the Google search engine has experienced countless updates
that incorporate new analytic metrics, reduce the transparency

4

of the search process, and prioritize results based on personal
data collected from the user [7]. One of the most significant
updates named “Hummingbird” was introduced in 2013. In
addition to simply matching the search terms with the title or
content of the web page, this algorithmic update now allowed
to measure the intent of the user [8]. This change not only
improved the user experience by presenting more relevant
search results, but also limited the usefulness of keyword
stuffing.

The basic concept of PageRank can also be extended to sup-
port topic-sensitive ranking in order to increase the accuracy
of the search results. Instead of directly finding the highest-
ranked pages that contain the words given in the search query,
this algorithm rates the importance of a page by calculating
a set of scores with respect to various topics [12]. When the
search query is made, we calculate the similarities between
the query and each topic. Then, by combining the PageRank
scores for the most similar topics, the final page ranking can be
determined. By using a topic-sensitive approach, we can avoid
the issue of highly-ranked web pages being recommended even
when their content does not concern the topic of the search
query [12]. In addition, this algorithm can be extended even
further by memorizing the context of the search - information
surrounding the search query. For example, the search for the
word “Jaguar” could prioritize either animal-related or car-
related search results based on the web page from which this
query was made [16]. This approach can be considered one
of the first forms of web personalization.

During the past few years, a lot of research has been
focused on the use cases of personal user data. By analyzing
the collected data and creating a user profile, modern search
engines offer personalized search results [9]. A search engine
using personalization can decide if a user is interested in a
specific website based on user location data, search history,
web browsing history, demographic data, and multiple other
factors [11]. Although the usage of personalized search offers
many benefits, it has also lead to growing concerns about the
effects of such large-scale personal data collection. In addition,
recently some research has been exploring the dangers of
the filter bubble effect - the possibility for personalization to
isolate people from interacting with a diversity of viewpoints
or content [13].

With the rising popularity of mobile devices, search engines
have also been forced to adapt to the changing landscape. As
the fraction of search queries on mobile devices has grown
rapidly, search algorithms have had to adjust based on the
differences between various platforms. For mobile users it
is extremely important that a web page is mobile-friendly
- made to work well with much smaller screen sizes and a
touchscreen interface. Therefore, most modern search engines
analyze each web page and calculate its mobile-friendliness
score that is later used in combination with the rest of the
search algorithm to determine the final page ranking [17].
Solutions that calculate a special platform-friendliness score
instead of just focusing on the mobile platform have also been
proposed.

V. FUTURE OF SEARCH

Although there has been extensive research on search algo-
rithms for multiple decades, the search for better algorithms
is not over. Many claim that the growth in the popularity
of artificial intelligence can bring even more improvements
to the industry. In addition, the inevitable arrival of quantum
computers also promises to disrupt the current landscape.

While artificial intelligence is already used quite often in
understanding the meaning of a search query, it can also be
applied to other types of search. One area for future research is
image search. Although some services already offer the option
to find similar images or search for images matching the search
query, current approaches are far from perfect [20].

One of the largest limitations for current implementations
of image search is the lack of extensive ontologies. Compared
to regular text-based search, images are much more difficult
to categorize as a very deep understanding of the semantics
of the images is required [21]. Image search is also limited
by the difficult process of detecting similarities between two
images and gathering information about their content. By
utilizing new developments in machine learning and artificial
intelligence, image recognition algorithms can be used to
determine the contents of the image [22]. However, this field
is still developing, so we can expect image search to become
more accurate and precise in the near future.

The advancement of quantum computers is seen as very
promising in the field of search of algorithms. One of the
most famous applications of quantum computers is Grover’s
search algorithm [18]. This algorithm is often called “database
search” as it can theoretically be applied in order to search
an unordered database in O(

√
n) time [19]. However, this

interpretation has caused some debate, as this algorithm would
require a very large amount of quantum hardware, so it would
not be easily achievable.

VI. CONCLUSION

The goal of this review paper was to research the field of
search algorithms and how it has developed over time due
to factors like the invention of computers and the increasing
popularity of search engines. In addition, this paper also ana-
lyzes existing search algorithms and provides an introduction
to some of the most promising future innovations that could
radically change the field in the near future. Although the
paper does contain a broad overview of the topic, it does not
go into much detail due to the vast amount of information
concerning this topic.

The field of search algorithms originates from mathematics,
however, the invention of computers changed it drastically.
Initially the term “search algorithms” used to represent only
pattern matching algorithms and graph algorithms like Depth-
First Search, Breadth-First Search, and A*. However, the
advancement in technology has caused a giant shift in the
field of search algorithms. With the rising popularity of search
engines, most search innovations have come in the form of
optimizations for ranking and selecting matching web pages
based on some search query. Since the original creation of

5

the PageRank algorithm that can be considered a backbone of
modern search engines, it has been extended countless times
by such improvements as calculating topic-sensitive PageR-
ank, incorporating search personalization, using AI to increase
search accuracy, and adjusting to the increasing popularity
of mobile platforms. However, the future of the field seems
hopeful as the artificial intelligence and quantum computing
industries promise to support new types of search and improve
existing algorithms even further.

Since the formation of the search algorithm field, the type
of problems that it contains has changed immensely. The
advancements in technology have created new opportunities
to apply search algorithms. Therefore, similarly to many other
fields, the landscape of search algorithms has been shaped by
innovations in other industries offering new possibilities rather
than the exhaustion of classical methods.

Further research could be done on the major changes in the
landscape of search algorithms. By analyzing the conception
of search engines, it would be possible to get a deeper under-
standing of precisely what new problems were created, what
initial solutions were proposed, and which of these techniques
are still being used today. In addition, more research could
also be done on the possible future of search algorithms and
how this field might develop if the proposed quantum search
algorithms could become a reality.

REFERENCES

[1] M. Bullynck, “Histories of algorithms: Past, present and future,” Historia
Mathematica, vol. 43, no. 3, pp. 332–341, 2016.

[2] N. Sultana, S. Paira, S. Chandra, and S. K. Alam, “A brief study
and analysis of different searching algorithms”, Second International
Conference on Electrical, Computer and Communication Technologies,
pp. 944-948, 2017.

[3] “Google Algorithm Updates & Changes: A Complete History,”
Search Engine Journal, 23-Feb-2021. [Online]. Available:
https://www.searchenginejournal.com/google-algorithm-history/.

[4] L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, Stanford, United
States, Tech. Rep. SIDL-WP-1999-0120, November 1999.

[5] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank,” ACM
Transactions on Internet Technology, vol. 5, no. 1, pp. 92–128, 2005.

[6] “Irrelevant keywords,” Google. [Online]. Available:
https://developers.google.com/search/docs/advanced/guidelines/irrelevant-
keywords.

[7] “8 major Google algorithm updates, explained,” Search Engine Land,
14-Oct-2020. [Online]. Available: https://searchengineland.com/8-major-
google-algorithm-updates-explained-282627.

[8] C. O. Lin and R. Yazdanifard, “How Google’s New Algorithm, Hum-
mingbird, Promotes Content and Inbound Marketing,” American Journal
of Industrial and Business Management, vol. 04, no. 01, pp. 51–57,
2014.

[9] E. Bozdag, “Bias in algorithmic filtering and personalization,” Ethics
and Information Technology, vol. 15, no. 3, pp. 209–227, 2013.

[10] A. Sieg, B. Mobasher, and R. Burke, “Web search personalization with
ontological user profiles,” Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, 2007.

[11] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy, D.
Lazer, A. Mislove, and C. Wilson, “Measuring personalization of web
search,” Proceedings of the 22nd international conference on World Wide
Web, 2013.

[12] T. H. Haveliwala, “Topic-sensitive PageRank: A context-sensitive rank-
ing algorithm for web search,” IEEE Transactions on Knowledge and
Data Engineering, vol. 15, no. 4, pp. 784–796, 2003.

[13] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A. Konstan,
“Exploring the filter bubble: the effect of using recommender systems
on content diversity,” Proceedings of the 23rd international conference
on World wide web, 2014.

[14] M. J. Pathak, R. L. Patel, Sonal P. Rami, ”Comparative Analysis of
Search Algorithms”, International Journal of Computer Applications,
vol. 179, no. 50, pp. 40-43, June 2018

[15] J. Holdsworth, ”The Nature of Breadth-First Search”, School of Com-
puter Science, Mathematics, and Physics, James Cook University, Aus-
tralia, Tech. Rep. 99-1, January 1999.

[16] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G.
Wolfman, and E. Ruppin, “Placing search in context: the concept
revisited,” Proceedings of the tenth international conference on World
Wide Web, 2001.

[17] D. Schubert, “Influence of Mobile-friendly Design to Search Results on
Google Search,” Procedia - Social and Behavioral Sciences, vol. 220,
pp. 424–433, 2016.

[18] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, 1996.

[19] A. Ambainis, “Quantum search algorithms,” ACM SIGACT News, vol.
35, no. 2, pp. 22–35, 2004.

[20] K. Smelyakov, D. Sandrkin, I. Ruban, M. Vitalii, and Y. Romanenkov,
“Search by Image. New Search Engine Service Model,” International
Scientific-Practical Conference Problems of Infocommunications. Sci-
ence and Technology, 2018.

[21] L. Zhang and Y. Rui, “Image search—from thousands to billions in 20
years,” ACM Transactions on Multimedia Computing, Communications,
and Applications, vol. 9, no. 1s, pp. 1–20, 2013.

[22] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-Label Image
Recognition With Graph Convolutional Networks,” IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019.

[23] C. Y. Lee, “An Algorithm for Path Connections and Its Applications”
IRE Transactions on Electronic Computers, vol. EC-10, issue: 3, pp.
346 - 365, 2019.

[24] A. V. Aho, M. J. Corasick, ”Efficient string matching: an aid to
bibliographic search”, Communications of the ACM, vol. 18, issue: 6,
pp. 333–340, 1975.

[25] D. E. Knuth, J. H. Morris, V. R. Pratt, ”Fast pattern matching in strings”
SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[26] C. Wilt, J. Thayer, W. Ruml, ”A Comparison of Greedy Search Algo-
rithms” Association for the Advancement of Artificial Intelligence, 2010.

[27] M. Sinthiya, M. Chidambaram, ”A Study on Best First Search” Interna-
tional Research Journal of Engineering and Technology, vol. 3, issue:
6, pp. 588-597, 2016.

[28] P. E. Hart, N. J. Nilsson, B. Raphael, ”A Formal Basis for the Heuristic
Determination of Minimum Cost Paths” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, issue: 2, pp. 100–107, 1968.

[29] A. Felner, ”Position Paper: Dijkstra’s Algorithm versus Uniform Cost
Search or a Case Against Dijkstra’s Algorithm” Conference Proceedings
of the Fourth Annual Symposium on Combinatorial Search, pp.47-51,
2011.

[30] R.E. Korf, ”Depth-First Iterative-Deepening: An Optimal Admissible
Tree Search” Artificial Intelligence, vol. 27, issue 1, pp.97-109, 1985.

6

