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Background 

Maritime structures in heavy seas can experience wave impact events with high loads. Impact events 

can be influenced by the presence of air in water through compressibility (Bredmose et al., 2009; Za et 

al., 2016; Plumerault et al., 2012). Compressibility leads to lower impact pressures and the generation 

of high-frequency load variations due to density waves. Quantification of the influence of aeration on 

impact pressures through numerical methods was challenging before. 

A new cartesian grid method, an extension of our work (van der Eijk & Wellens, 2019, 2023, 2024) for 

compressible multiphase flow, is introduced to account for water, air and homogeneous mixtures of 

air and water. The method is designed to predict the hydrodynamic loads on moving bodies engaging 

with interfaces between fluids having large density ratios. An equation for conservation of energy is 

omitted by enforcing pressure-density relations. 

New experimental data of 2D wedge impacts with aerated water, made available as open data, are 

presented to demonstrate the validity of the numerical method. 

 

Method 

Computing the position of the fluid-fluid and the fluid-body interfaces accurately is relevant for 

determining the moment of impact. A colour function 𝑓(𝑥, 𝑡) is used to capture the position of the 

interface. Transport of the interface is described by  

𝐷𝑓

𝐷𝑡
=

𝜕𝑓

𝜕𝑡
+ (u . 𝛁)𝑓 = 0,                                                                    (1) 

in which 𝑓(𝑥, 𝑡) = 0 gives the position of the interface and u the interface velocity. Eq. (1) is 

implemented as a Volume-of-Fluid algorithm. 

The positions of the interfaces lead to volume fractions. The definition of the volume fractions is given 

in Figure 1. Volume fraction 𝐶𝑏 indicates the part of a volume that is open to fluid. Fraction (1−𝐶𝑏) then 

represents the part of a volume that is occupied by a (moving) body. Volume fraction 𝐶𝑎 indicates the 

part of a volume that is occupied with gas (air), where 𝐶𝑓 gives the part of the volume occupied with 

liquid, either water or aerated water, a homogeneous mixture of air and water. 



 

Figure 1: Illustration of the phases of matter in the solver and how they are represented discretely in 

the cartesian grid. Volume fraction 𝐶𝑓 is used for representing aerated water, 𝐶𝑎 for air above the 

water, 𝛽𝑙 for the water part of the homogeneous air-water mixture, 𝛽𝑔  for the air part. 𝐶𝑏 gives the 

part of a volume not occupied by the body and open to fluid. 

Following Plumerault et al. (2012), additional volume fraction fields are introduced to indicate the part 

by volume of the homogeneous mixture that is gas, 𝛽𝑔, and the part that is water, 𝛽𝑙. These volume 

fractions are necessary for the formulation of the mathematical model. The governing equations are 

formulated for a multiphase flow of immiscible Newtonian fluids. An equation for the conservation of 

mass, using a single velocity field u, is formulated for each phase 

𝜕𝛼𝑘𝜌𝑘

𝜕𝑡
+ 𝛁 . (𝛼𝑘𝜌𝑘 u ) = 0,      𝑘 = 𝑎, 𝑙, 𝑔                                                         (2) 

in which subscript 𝑎 stands for air above water, 𝑙 for the liquid part of the phase with aerated water, 

and 𝑔 for the air part of the aerated water phase. Fractions 𝛼𝑘 are defined as 

 𝛼𝑎 =
𝐶𝑎

𝐶𝑏
,        𝛼𝑙 =

 𝛽𝑙𝐶𝑓

𝐶𝑏
,       𝛼𝑔 =

 𝛽𝑔𝐶𝑓

𝐶𝑏
                                                             (3) 

Using 𝜌 as the density of the aggregate fluid, the equations for the conservation of momentum read 

𝜕𝜌u

𝜕𝑡
+ 𝛁 . (𝜌u  ⨂ u ) + 𝛁𝑝 + 𝜌g = 0.                                                          (4) 

Here, 𝑝 is the pressure in the aggregate fluid and g  the vector of the acceleration of gravity. Note that 

the viscous term has been omitted from the momentum equation as mainly short-duration events will 

be considered, in which viscous effects such as the formation of boundary layers can be ignored. 

The governing equations require closure that for reasons of efficiency is not obtained through solving 

an energy relation, but by means of a formulation for the speed of sound of the mixture. For the air-

water mixture we define a mixture density (𝜌𝑓) as follows 

𝜌𝑓 = (1 −  𝛽𝑔)𝜌𝑙 + 𝛽𝑔𝜌𝑎,        𝜌 =
 𝐶𝑓

𝐶𝑏
𝜌𝑓 +

 𝐶𝑏−𝐶𝑓

𝐶𝑏
𝜌𝑎.                                  (5) 

According to the equation of Wood (1941), rewritten by making use of the volume fractions of the 

different phases, the speed of sound formulation for homogeneous mixtures becomes 



1
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2 +

𝐶𝑓
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𝜌𝑓𝑐𝑓
2                                                         (6) 

This mixture speed of sound  𝑐𝑓 (Wood, 1941) is illustrated in Figure 2; it shows a large decrease in 

speed of sound for a small fraction of 𝛽𝑔, even up to values lower than the speed of sound of air 𝑐𝑎 

and water 𝑐𝑙  at atmospheric conditions. The low speed of sound explains the relevance of 

compressibility (Mach number) for aerated impacts. 

 

Figure 2: Woods’ formulation in Eq. (6) for mixture sound of speed  𝑐𝑓 Plotted for air volume fraction 

𝛽𝑔 assuming 𝐶𝑓 = 1. 

 

Results 

The test case with a shock bubble is performed to investigate how density waves change direction and 

how they are transmitted between fluids in simulations with a compressible multiphase method. 

Helium shock-bubble experiments were performed by Haas and Sturtevant (1987) and the results 

serve as a benchmark. 

The simulation setup for the 2D helium shock bubble case is illustrated in Figure 3. Air, initially, is in 

two states on either side of the domain. A cylindrical helium bubble is placed in the air at one of these 

states, approximately in the middle of the domain. The domain boundaries are closed with 

atmospheric pressure prescribed on the left horizontal end of the domain. 



 

Figure 3: Shock bubble: simulation setup with air at two states of pressure, and helium bubble in the 

air at one of these states. 

Quirk and Karni (1996) conducted a detailed numerical study of the helium shock bubble. Kreeft and 

Koren (2010) also simulated the shock bubble, but with different fluid properties using a density-based 

model solving Kapila’s five-equation model for inviscid, non-heat-conducting, compressible two-fluid 

flows. 

In our simulations, the front of the density wave before interacting with the helium bubble at 𝑡 =0 [s], 

is smeared out over ten grid cells. We chose the position in the middle of these 10 cells as the position 

of the density wave front to compare with the results from literature. The results of the simulations 

are given in terms of the positions and the velocities of the interfaces and the density wave fronts. The 

definition of all interfaces and shock fronts is given in Figure 4a. Interfaces and shock fronts are 

identified by their velocities v. Figure 4b features a space-time plot of the interfaces, in which the 

results of the numerical method at three grid resolutions is compared with the results of Quirk and 

Karni [6]. The positions of the interfaces over time are in good agreement with Quirk and Karni (1996). 

         

(a) Definition of interfaces and density wave fronts.            (b) Space-time plot of interface positions. 

Figure 4. Shock bubble: definition of interfaces and density wave fronts together with a space time plot 

of the position of the interfaces and wave fronts. Numerical results (markers) at three grid resolutions: 

400x50 (black symbols), 800x100 (blue symbols) and 1200x150 (red symbols), compared with Quirk 

and Karni (1996) (solid lines). 



 

Experiments for impacts with aeration are rare. Trying to avoid the effect of cavitation, encountered 

by Ma et al. (2016), because our numerical method would not be able to deal with it, we chose to 

conduct an experiment with falling wedges. 

The setup of the experiment consists of three parts: a box containing aerated water, a fall tower and 

a wedge attached to a guiding mechanism within the fall tower. The fall height from the tip of the 

wedge to the initial free surface of the water is at most 2.83 [m] so that, with friction, a maximum 

impact speed 𝑉𝑖 up to 7.0 [m/s] can be achieved. The box and wedge are illustrated in Figure 5, in 

which 𝛼 is the deadrise angle. 

 

Figure 5: Setup of wedge impact experiment with aerated water. Dimensions of the experiment are 

also the dimensions of the numerical domain. 

Two wedges are used, each with a mass of 31.78 [kg/m], having different deadrise angles (𝛼). One has 

a deadrise angle of 15 [deg]; the other with 30 [deg] deadrise angle is not discussed further. Pressure 

sensors were used at two different locations along the bottom of the wedge to measure the impact. 

Air bubbles in water are created at the bottom of the box. The experiment is conducted for four 

aeration levels (𝛽𝑔 = 0.0, 0.01, 0.02, 0.04 [-]). Figure 6 shows the pressures obtained from the numerical 

simulations with grid 109x29 together with the pressures obtained from the tests in the experiment. 

The atmospheric pressure was subtracted from all results. Solid blue lines are for pressure sensor 1 

and dashed blue lines are for pressure sensor 2. The blue lines for the pressure from the experiment 

are the average of ten signals. A band is formed along the lines representing one standard deviation 

above and below the average. Red lines in Figure 6 represent the pressures from the simulations, solid 

lines for pressure sensor 1 and dashed lines for pressure sensor 2. The lines are the average pressures 



obtained from two simulations- at each aeration level 𝛽𝑔 with the minimum and maximum value 

measured at that level on either side of the wedge. 

 

             

                            (a) 𝛽𝑔=0.0 [-] and 𝛼=15 [deg].                          (b) 𝛽𝑔=0.01 [-] and 𝛼=15 [deg]. 

          

                    c) 𝛽𝑔=0.02 [-] and 𝛼=15 [deg].                                    (d) 𝛽𝑔=0.04 [-] and 𝛼=15 [deg]. 

Figure 6. Impact pressures: simulation results (red) with experimental results (blue) for two pressure 

positions. Pressure sensor 1 is represented by solid lines (__). Pressure sensor 2 is represented by dashed 

lines (- - -). Band for the experiments composed of one standard deviation below and one above average 

pressure. Grid 109×29 was used for the simulations. Simulated pressures are the average of two 

simulations with the minimum and maximum value for aeration at that level. Band around numerical 

results formed by minimum and maximum. Uncertainty of grid convergence not included in graphs. 

The simulated pressures show good agreement with the measured pressures for all aeration levels. 

The lower aeration levels are represented better than the higher aeration levels; this is thought to be 

caused by inhomogeneity of the air-water mixture at higher air content, and 3D interaction effects of 

air bubbles. 

The wedge impacting with the aerated water generates density waves due to the compressibility of 

the air-water mixture. The density waves reflect off of domain boundaries and propagate back to the 

wedge. The back-and-forth propagation of the density waves causes high-frequency pressure 

oscillations on the wedge. A time sequence of the simulated pressure after impact for the wedge with 



𝛼 = 15 [deg] and for aerated water with 𝛽𝑔 = 0.04 [-] is shown in Figure 7. The density waves become 

apparent by their front, which shows as a barrier between regions with higher and lower pressure that 

propagates through the domain. 

 

(a) t = 0.002 [s].                                                                       (b) t = 0.007 [s]. 

 

(c) t = 0.011 [s].                                                         (d) t = 0.014 [s]. 

Figure 7. Time sequence of simulated pressure fields for wedge impact 𝛼 = 15 [deg] and 𝛽𝑔 = 0.04 [-] at 

different time instances. From the sequence it becomes apparent that density waves are formed that 

propagate through the domain. 

 

Conclusion and future outlook 

A new compressible pressure-based multiphase model is presented for modeling the interaction of 

homogeneous aerated water with moving bodies. The formulation was designed with efficiency in 

mind: it solves a system of equations that is no larger than the number of cells in the domain and it 

does not require iteration within a time step. The model can deal with high-density ratio compressible 

flows using a non-conservative formulation for transport of the interface together with a new 

formulation for the speed of sound in multiphase mixtures. 

The numerical results are in good agreement with solutions for traditional compressible multiphase 

flow cases, such as a cylindrical helium shock bubble. The test cases demonstrate the method’s ability 

to handle contact discontinuities and rarefactions. The pressure levels in propagating density waves 



were predicted well, but the discontinuity between pressure levels was diffused over a couple of grid 

cells. 

A 2D experimental setup for wedge impacts with water was converted specifically for this study to 

validate the numerical method for the interaction between aerated water and moving bodies in terms 

of the impact pressure. A level of 1% aeration by volume reduces the impact pressure by 14%. The 

numerical and experimental results are in good agreement for lower aeration levels, both showing a 

similar maximum pressure and development of the pressure over time. The differences at higher 

aeration levels are larger. We believe this to be due to three dimensional effects of the bubbles in the 

mixture in the experiment at higher aeration levels. These are not yet accounted for by the numerical 

method. 

Future work will focus on representing the effects at higher aeration levels, both by means of numerical 

method development and new experiments to measure the distribution of gas bubbles in water. 
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