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Motivation

The continuous demand to increase 

efficiency in energy conversion systems

productivity in chemical processes

&

forces engineers to use fluids at increasingly 
higher pressures and temperatures!



Phase diagram of an arbitrary substance



Supercritical power cycle 



Properties of CO2 @ 80 bar



Transmissivity at high pressures

Near IR region 



Challenge: turbulence in supercritical fluids



1.How does compressibility affect turbulence?

2. How does radiative heat transfer interact with turbulence?
1. “Universal” scaling laws

2. Turbulence models for RANS (& LES)
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Scaling of turbulent statistics

Hot (or cold) wall

densityvelocity viscosity

Conventional (incompressible) wall based scaling Compressible semi-local scaling  (Huang et al., 1995)

Friction velocity 

Viscous length scale

Friction Reynolds number

Non-dim wall distance
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Velocity scaling

Incompressible channel Compressible channel
(Lee & Moser, JFM 2015) (Own unpublished work)

Scaling based on wall unitsScaling based on wall units
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Velocity scaling

Compressible channel
(Own unpublished work)

Scaling based on wall units Scaling based on semi-local units
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Velocity scaling

Compressible channel
(Own unpublished work)

van Driest velocity scaling, (1951)Scaling based on wall units Scaling based on semi-local units
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Is it possible to derive a “universal” scaling for compressible flows?
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Turbulent channel flow configuration 

Numerical schemes

• Low-Mach number/anelastic approximation of Navier-Stokes equations (no acoustic waves)

• 6th order compact finite difference (staggered) in wall normal direction 

• Pseudo spectral method in periodic directions (skew-symmetric form of advective terms)
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Isothermal wall

Simple setup

• Continuity 

• Momentum 

• Enthalpy 

Governing equations



16

Volumetrically heated channel flows

Density

Viscosity

Density

Viscosity

Semi-local Reynolds number
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Volumetrically heated channel flows

Density

Viscosity

Semi-local Reynolds number

Density

Viscosity
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Volumetrically heated channel flows

Density

Viscosity

Density

Viscosity

Semi-local Reynolds number
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Turbulent statistics

Semi-local Reynolds numberStreamwise vorticity fluctuations

Semi-local wall distance 

Semi-local Reynolds number is governing parameter of turbulence statistics!
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Extending semi-local scaling framework (Patel et al., PoF 2015)

• Evolution equation of fluctuating velocity components 

Effective viscosity 
Characteristic velocity 

Mean density gradient

• Idea: use semi-local scaling transformations for evolution equations

with:

• Stress balance equation (fully dev. turbulent channel)

Turbulent shear stress

Viscous stress Total stress

Semi-local Reynolds number is governing parameter of turbulence statistics!
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Semi-locally scaled stress balance equation  

Viscous stress



22

Semi-locally scaled stress balance equation

Viscous stress

Universal velocity 
transformation:

with:

Scaled viscous stress is 
basis for transformation:
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Velocity scaling for channel flows

Van Driest transformation “Universal” transformationScaling based on wall units
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How do conventional turbulence models perform? 
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How do conventional turbulence models perform? 

Reynolds/Favre averaged equations for fully developed turbulent channel

• Streamwise momentum 

• Energy equation 

• Turb kinetic energy

+ supporting eqs.

• Eddy viscosity 
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V2F turbulence model

Trettel and Larson, PoF (2016)
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Nusslet number error:                20.3% 53.2%      52.9%
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Extending semi-local scaling framework

• Turbulent kinetic energy

• Momentum:
viscous terms governed by 
semi-local Reynolds number

• Using semi-local scaling transformations to non-dimensionalize conservation equations

with:
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Semi-locally scaled turbulent kinetic energy budget (Pecnik, JFM 2016)

Lines
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Semi-locally scaled turbulent kinetic energy budget (Pecnik, JFM 2016)

Fully developed channel 

Transforming back to 
conventional scales 

Diffusion of TKE acts upon 
energy per unit volume !
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V2F turbulence model

Trettel and Larson, PoF (2016)
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Heat transfer to supercritical fluids
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Turbulence models fail

Experiment

Turbulent heat transfer
(constant heat flux)

Sharabi, Ambrosini, Ann. Nuclear Energy (2009)

Turbulence models



Density Dyn. viscosity
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Numerical study of heat transfer using DNS 
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Considered cases

Case Type Direction / gravity Richardson #

A Forced No gravity 0

B Mixed Upward flow ⇡ -10

C Mixed Upward flow ⇡ -270

D Mixed Downward flow ⇣ 100

With:

• Reynolds number: 

• Prandtl number:

• Non-dimensional heat flux:
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Forced convection (case A)

Nemati et al., JFM (2016)
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How do turbulence models perform?
Reynolds/Favre averaged equations

• Momentum equations

• Enthalpy equation

• Turbulent kinetic energy equation

• Other turbulent model supporting equations, for example for V2F model (Durbin 1995)

• Eddy viscosity

Gradient diffusion hypothesis for buoyant production 
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Model results V2F model for supercritical pipe flow

Symbols: DNS
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Model results – supercritical pipe flows
Symbols: DNS



Conclusions

• Target modeling buoyancy production term
• Test approach to experimental data 

at higher Reynolds numbers

Future directions

We proposed: 

• Scaling for velocity 

• Scaling for temperature

• Generic modification for turbulence models 

• Improved results for supercritical flows

https://github.com/Fluid-Dynamics-Of-Energy-Systems-Team/RANS_Channel

https://github.com/Fluid-Dynamics-Of-Energy-Systems-Team/RANS_Channel

