

# Supersonic-mode transition in a dense-gas boundary layer at Mach 6

X. Gloerfelt, L. Sciacovelli, <u>P. Cinnella</u> & F. Grasso DynFluid Laboratory, Arts et Métiers Paris, France xavier.gloerfelt@ensam.eu

3<sup>rd</sup> International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion & Power 29-30 October 2020, Delft, Netherlands



Supersonic-mode transition in a dense-gas h

Gloerfelt, Sciacovelli, Cinnella, Grasso

Supersonic-mode transition in a dense-gas boundary layer at Mach 6 - 1 of 16

#### Scope of the present study

- Study of non-ideal gas effects on boundary layer (BL) transition
- Previous stability analysis<sup>1</sup>: very different results for dense gases at high-speeds  $\rightarrow$  supersonic mode
- The challenge is then to determine if this peculiar mode can eventually lead to transition toward a turbulent state
- First investigation of supersonic-mode breakdown for perfluorocarbon PP11 (numerical dense-gas wind tunnel)
  - stability: Gloerfelt, Robinet, Sciacovelli, Cinnella & Grasso, "Dense gas effects on compressible boundary layer stability", J. Fluid Mech., 893:A-19-1-41, 2020
  - turbulent regime & numerical details: Sciacovelli, Gloerfelt, Passiatore, Cinnella & Grasso, "Numerical investigation of high-speed turbulent boundary layers of dense gases", Flow Turb. Combust., 105:555-579, 2020

TUNNEL: P2/P1 = 12 TUNNEL: P2/P1 = 5.6

high-Mach, high-Reynolds NASA Langley CF4 wind tunnel, dismantled in 2017, which used a light perfluorocarbon, CF<sub>4</sub>





NASA 1 - T2 - 2TD

#### Laminar boundary layer: similarity profiles



▶ Dense gas: high C<sub>p</sub> → very small T variations → almost no friction heating → BL thickening close to incompressible regime

▶ robust w.r.t. fluid (PP11; R134a; R245fa; MDM; D<sub>6</sub>) and operating conditions ( $\Gamma_{\infty} < 0$ ;  $\Gamma_{\infty} < 1$ ;  $\Gamma_{\infty} > 1$ ; dilute gas)

#### Laminar boundary layer: Stability results



Very different results for M > 1 !!

- Perfect gas: first mode weakened but unstable and 3D (oblique mode) and second mode (2D) dominates for M > 4.
- ▶ Dense gas: first mode stable for M > 2; no second mode from Slow-mode-branch; appearence of a **supersonic mode** (2D) from Fast-mode-branch at high frequencies

Modal scenarii for perfect gas

Arts Sternalsternet / Purce /

- Modal (natural, controlled) transition:
  - ► incompressible Tollmien-Schlichting (TS): viscous instability
  - for supersonic flows, TS more unstable in 3D (oblique waves) but weakened by compressibility
  - ▶ for  $M \gtrsim 3$  first mode (extension of TS) becomes an inviscid instability
  - ► for  $M \gtrsim 4$ , second mode (2D acoustic mode) is the most unstable but first mode can be still present
- two scenarii for hypersonic boundary layers: first-mode oblique or second-mode breakdown

Franko & Lele, J. Fluid Mech (2013)

- second mode is excited in experiments but the route to turbulence is unclear (*e.g.* Fasel's team, expe Zhang et al. ↓)
- first mode can be more efficient (lower frequency)



### Modal scenarii for dense gas



The only unstable mode for  $M \gtrsim 2.5$  is the supersonic mode (the inviscid first mode is not present due to the absence of a generalized inflection point)

 predicted in air for high-enthalpy hypersonic boundary layers with strong wall cooling

BUT only linear wavepacket (no nonlinear transition to turbulence

 $\rightarrow$  open question)



Knisely & Zhong, Phys. Fluids (2019a,b) Bitter & Sheperd, J. Fluid Mech (2013)

▶ pertains to acoustic mode smaller BL thickening → smaller acoustic waveguide height → high frequency most unstable in 2D and high amplification rate

## DNS simulations: parameters of M=6 BL

|                  | $U_{\infty}$ | $ ho_{\infty}$       | $T_{\infty}$ | $T_w$ | $Ec_\infty$ | $Re_{\theta}$ | $\delta_{99}$ | $\theta$ | Н     |
|------------------|--------------|----------------------|--------------|-------|-------------|---------------|---------------|----------|-------|
|                  | [m/s]        | [kg/m <sup>3</sup> ] | [K]          | [K]   |             |               | [mm]          | [mm]     |       |
| Air <sup>†</sup> | 969.7        | 0.13                 | 65           | 422.5 | 14.4        | 5720          | 5.98          | 0.23     | 13.81 |
| PP11             | 198.8        | 348.4                | 646.83       | 663.2 | 0.0033      | 4402          | 0.032         | 0.0031   | 2.12  |

same parameters as Franko & Lele, J. Fluid Mech (2013)



Gloerfelt, Sciacovelli, Cinnella, Grasso

Supersonic-mode transition in a dense-gas boundary layer at Mach 6 - 7 of 16

#### DNS simulations: code



Flow governed by the 3D compressible Navier-Stokes equations

#### Code MUSICA2

- 10th-order standard centered scheme for inviscid fluxes
- > 9th-order Jameson-type non-linear artificial viscosity + Ducros sensor
- 4th-order standard centered scheme for viscous fluxes
- Explicit four-step low-storage Runge-Kutta for time integration
- Equation of state: Ideal gas for air and Martin-Hou virial law for PP11
- Transport properties: Sutherland+cst Prandtl for air and Chun-Lee-Starling for PP11
- Characteristic boundary conditions (+periodicity in spanwise)
- No-slip isothermal walls
- Suction and blowing at the wall

#### DNS simulations: grid and excitation



|      | N <sub>x</sub> | Ny  | Nz  | $L_x/\delta$ | $L_y/\delta$ | $L_z/\delta$ | $\Delta x^+$ | $\Delta y_w^+$ | $\Delta y_e^+$ | $\Delta z^+$ |
|------|----------------|-----|-----|--------------|--------------|--------------|--------------|----------------|----------------|--------------|
| Air  | 7700           | 300 | 400 | 75.2         | 2.13         | 2.17         | 3.76         | 0.26           | 5.1            | 2.09         |
| PP11 | 14336          | 320 | 280 | 90.1         | 1.75         | 1.56         | 8.12         | 0.65           | 18             | 9.77         |





Gloerfelt, Sciacovelli, Cinnella, Grasso

Supersonic-mode transition in a dense-gas boundary layer at Mach 6 - 10 of 16



#### Laminar regime for dense-gas

#### Mean flow distorsion (MFD) 1.5 1 6 0.8 5 $y/\delta_{99}$ $\frac{4}{\kappa} \frac{4}{\kappa}$ 0.6 0.5 0.4 2 0.2 1 1.5 0 600 800 1000 1200 $x/\delta_{er}^*$

- 0.5  $\overline{n}$  $y/\delta_{99}$ 0.5 n 0.2 0.4 0.6  $\overline{u} - u_h$
- after MFD, the base flow is completely different and the 2D unstable mode (supersonic or second mode<sup>†</sup>) is no more sustained and rapidly falls down
- streaky structures are generated due to the presence of 3D perturbations (oblique waves)

<sup>†</sup> Sivasubramanian & Fasel, "DNS of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown", J. Fluid Mech., 768:175–218, 2015

Modal analysis: 
$$(n, k) = (\omega/\omega_0, \beta/\beta_0)$$

Streamwise development of the maximum u-velocity disturbance amplitude



 $\hookrightarrow$  similarity between supersonic-mode breakdown and second-mode breakdown

#### Streaks amplitude





- ▶ streak amplitude approximated as  $A = \frac{1}{2U_{\infty}} \left[ \max_{y,z} (u u_B) \min_{y,z} (u u_B) \right]$
- relatively low streak amplitude
- sinuous pattern observed

#### Instantaneous 3D visualization





- Streak instability or transient growth? Secondary spanwise perturbation?
- $\rightarrow$  lift-up mechanism yields a rapid turbulent breakdown

Gloerfelt, Sciacovelli, Cinnella, Grasso

Supersonic-mode transition in a dense-gas boundary layer at Mach 6 - 14 of 16

#### **Turbulent regime**





- Turbulent state is reached without overshoot (irregular breakdown pattern similar to bypass transition)
- ▶ van Driest-transformed profiles  $\approx$  incompressible wall units scaling (despite M=6)
- more details for turbulent state in Sciacovelli, Gloerfelt, Passiatore, Cinnella & Grasso, "Numerical investigation of high-speed turbulent boundary layers of dense gases", Flow Turb. Combust., 105:555-579, 2020

#### **Conclusions and perspectives**



- first simulation of turbulent breakdown with a supersonic mode (either for dense gas or perfect gas)
- bear similarities with second-mode breakdown, which confirms that it belongs to "acoustic modes"
- ► in particular: no direct transition but strong mean flow distorsion → streaks of low amplitude → breakdown through lift-up mechanism
- acoustic radiation from the instability wave; no overshoot in the friction evolution
- transition with acoustic mode is not very efficient
  - $\rightarrow$  more probably freestream transition
- new project REGAL-ORC: comparison of freestream-transition simulations with experiments in CLOWT facility (FW-Muenster)