

European Research Council

Established by the European Commission

Similarity Parameters for Non-Ideal One-Dimensional Isentropic Expansions

C. C. Conti*, A. Spinelli, A. Guardone

*camillacecilia.conti@polimi.it

<u>3rd International Seminar on Non-Ideal Compressible-Fluid Dynamics for</u> <u>Propulsion & Power</u>, 29-30 Oct. 2020 – Delft

Background

Non-Ideal Compressible Fluid Dynamics (NICFD)

Dense vapors Close to VLE + critical point Two-phase

Focus on: Non-Ideal Dependence of Isentropic Expansions

Thermal and Caloric Behaviour

4

Calculation Framework: 1D isentropic expansions

Туре	Fluid
Siloxanes	MM
	MDM
	D4
	D6
Alkanes	Butane
	Pentane
	Hexane
	Octane
	Decane
Cyclic Alkanes	Cyclopentane
	Cyclohexane
Alkenes	Isobutene
	Benzene
Other Hydrocarbons	Toluene
	Acetone
Halocarbons	R1234yf
	R218
	R1233zd
	R227ea
	RC318
Other Fluids	Water
	Carbon Dioxide
	Ammonia

- 10 x (P_T , T_T) with same $Z_T = \frac{P_T}{R T_T \rho_T}$
- $0.4 \le Z_T \le 0.9$
- widest possible region
- $P_{max} = 3P_c$, T_{max} from TDM

- Helmoltz energy-based TDM
- Independent of geometry:
- $\frac{P}{P_T}: 1 \to 0.05$

- 20 HMC fluids
- 3 LMC fluids

Results: Z and Γ Similarity

- MM (HMC)
- Same $Z_T \rightarrow \text{similar } Z$ and Γ along expansions

Similar **volumetric** + **caloric** behavior!

• $\downarrow Z_T \rightarrow$ less similar Z and/or Γ

Results: Expansions Similarity

- MM (HMC)
- Expansions grouped according to Z_T (except $Z_T = 0.4$)

Results: Z_T

Similarity Parameter to Characterize Non-Ideal Isentropic Expansions (HMC)

• Experimentally verified in the TROVA!

Results: Z and Γ along expansions (HMC - MM)

Results: Z and Γ along expansions (HMC - MM)

Results: Z_T as a Similarity Parameter for HMC fluids

Spread in P/P_T in a 'fixed geometry' for expansions with same Z_T but different (P_T, T_T)

$$\Delta_{P/P_{T}}^{Z_{T}} = \frac{\max P/P_{T}(Z_{T}) - \min P/P_{T}(Z_{T})}{\min P/P_{T}(Z_{T})} \cdot 100$$

- $\downarrow \Delta_{P/P_T}^{Z_T}$ if \uparrow ideality
- $\uparrow \Delta_{P/P_T}^{Z_T}$ if $M \uparrow (\downarrow$ denominator)

Conclusions & Future Outlook

Non-ideal 1D isentropic expansions -> Similarity Parameter?

• HMC fluids + $Z_T \ge 0.5$

- VdW calculation
 - Molecular interpretation

POLITECNICO MILANO 1863

European Research Council

Established by the European Commission

<u>3rd International Seminar on Non-Ideal Compressible-Fluid Dynamics for</u> <u>Propulsion & Power</u>, 29-30 Oct. 2020 – Delft

Objective

• Experimentally observed (TROVA): expansions within errorbars for $Z_T > 0.6$ Siloxane MM + limited region

Suitability of Z_T as similarity parameter

- Wider region
- Other fluids

1D Isentropic Expansions

Calculation Framework: 1D isentropic expansions

Results: P/P_T Similarity

- MM (HMC) and CO2 (LMC)
- Confirmed $\frac{P}{P_T} = f(P_T, T_T)$
- Expansions grouped according to Z_T for HMC (except $Z_T = 0.4$)

Results: Z and Γ along expansions (LMC – CO2)

• Same $Z_T \rightarrow NOT$ similar expansions \rightarrow similar Z, **NOT** similar Γ

Results: Z and Γ along expansions (LMC – CO2)

iso -Z // and vertical on Branch A \rightarrow same Z_T , similar $Z \approx const$ *iso* -Z *NOT* // *iso* $-\Gamma \rightarrow$ same Z_T , **NOT** similar Γ along expansions