Non-Ideal Effects in Compressible Swirling Flows

3rd International Seminar on NICFD Delft, The Netherlands

F. Tosto, A. Giuffre', P. Colonna, M. Pini Propulsion and Power, Delft University of Technology

Propulsion & Power The information in this document is the property of TU Delft and may not be copied or communicated to a third party without prior written consent

Background

Limited knowledge of NICFD effects on turbomachinery

• efficiency

operability

instability

1

choking

NICFD effects: isentropic exponent γ_{pv}

$$\gamma_{pv} = -\frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_s$$

Dilute gas state: $\gamma_{pv} \rightarrow \gamma$, with $\gamma > 1$

Relevance of NICFD effects on losses

No existing knowledge on quantitative impact of NICFD effects on

- Choking conditions
- Flow deviation in post and pre-expansion processes

• Assess variation of flow deviation as $f(\gamma_{pv})$

• Assess impact of γ_{pv} on choking in turbomachinery

Methodology: 2-steps Approach

Theoretical Analysis

7

Corrected mass flow per unit area (1)

Assumption:
$$\gamma_{pv} = const$$

Corrected mass flow per unit area (2)

Assumption: $\gamma_{pv} = const$

Investigated Processes

 $\gamma_{pv} < \gamma$

Influence of γ_{pv} on Choking

Horizontal line at constant \dot{m}_{corr} (A-B-C)

- Point B: sonic throat (M = 1)
- Point C: post-expansion final state (M = 1.8)
- Deviation angle increases if γ_{pv} decreases

Exemplary Expansion in Supersonic Turbine

Vertical line at constant M_m (D-B-E)

- Constant flow coefficient
- Negligible post-expansion
- $\Delta \dot{m}_{corr}$ increases if γ_{pv} decreases
- Larger area variation to accommodate larger volumetric flow ratio $\alpha = \rho_{t,in} / \rho_{out}$

CFD Verification

Test Cases & Numerical Setting

3D transonic stator vanes

iMM: $\beta_{ts} = 2.0 - 2.8 - 3.4$ niMM: $\beta_{ts} = 1.8 - 2.7 - 3.8$

Spatial discretization: 2^{nd} order Turbulence: $k - \omega$ SST ($y^+ \le 1$) Fluid mesh: 5M points Look-up table: 2.5M (iMM) - 4M (niMM) points

Results

- 1D model qualitatively in line with CFD if sufficiently far from chocking
- Large deviation in volumetric flow ratio
 - iMM: $\alpha_{ts} = 2.2 3.1 3.8$
 - niMM: $\alpha_{ts} = 1.6 4.0 6.9$

Physical Insights

- $\gamma_{pv} < \gamma \rightarrow$ larger area variation to accommodate larger α at given β
- $\gamma_{pv} < \gamma \rightarrow$ larger flow deviation in convergent blade channels

Take-Away Messages

- Expansions characterized by $\gamma_{pv} < \gamma$ lead to **earlier choking** and **larger flow deviation** when fixing β_{ts}
- Turbines operating with flow $\gamma_{pv} < \gamma$ (ORC) more susceptible to reach **complete choking** \rightarrow operability/efficiency issues
- Research hypothesis:

choice of **convergent-divergent** nozzle driven by ability to control flow deviation and extend operating range

Ongoing & Future Work

- Verify hypothesis by
 - Investigate expansion in convergent-divergent nozzles
- Pre-expansion at compressor inlet
- Analysis of compression processes

Further info upon request @ <u>m.pini@tudelft.nl</u> & co-workers!

yo.

