# Non-Ideal Effects in Compressible Swirling Flows 

## $3^{\text {rd }}$ International Seminar on NICFD <br> Delft, The Netherlands

F. Tosto, A. Giuffre', P. Colonna, M. Pini

Propulsion and Power, Delft University of Technology

## Background

Limited knowledge of NICFD effects on turbomachinery

- efficiency
- operability



## NICFD effects: isentropic exponent $\gamma_{p v}$

$$
\gamma_{p v}=-\frac{v}{p}\left(\frac{\partial p}{\partial v}\right)_{s}
$$

Dilute gas state:
$\gamma_{p v} \rightarrow \gamma$, with $\gamma>1$


## Relevance of NICFD effects on losses




## Efficiency can differ of up to $\sim 4 \%$

## Problem Statement

No existing knowledge on quantitative impact of NICFD effects on

- Choking conditions
- Flow deviation in post and pre-expansion processes

Propulsion \& Power

## Scope of Research

- Assess variation of flow deviation as $\boldsymbol{f}\left(\gamma_{p v}\right)$
- Assess impact of $\gamma_{p v}$ on choking in turbomachinery


## Methodology: 2-steps Approach

- Theoretical analysis on Swirling Flow
- Verification and 2 validation through CFD


## Theoretical Analysis

## Corrected mass flow per unit area (1)

$$
\dot{m}_{c o r r} \simeq \frac{M_{m} \xlongequal{\left(1+\frac{\gamma_{p v}-1}{2} M^{2}\right)^{\frac{\gamma_{p v}+1}{2\left(\gamma_{p v}-1\right)}}}}{\begin{array}{l}
\text { absolute } \\
\text { Mach number } \\
\text { meridional }
\end{array}}
$$



## Corrected mass flow per unit area (2)

$$
\begin{aligned}
& \dot{m}_{c o r r} \simeq\left(1+\frac{\gamma_{p v}-1}{2} M^{2}\right) \sqrt{\frac{M^{2}}{1+\frac{\gamma_{p v}-1}{2} M^{2}}-(\underbrace{\left(\frac{u_{\theta}}{\sqrt{\gamma_{p v, t} Z_{t} R T_{t}}}\right)^{2}}} \begin{array}{c}
=\hat{u}_{\theta} \\
\text { swirl parameter }
\end{array} \\
& \text { absolute }
\end{aligned}
$$



Assumption: $\gamma_{p v}=$ const

## Investigated Processes




## Influence of $\gamma_{p v}$ on Choking


$\gamma_{p v}>\gamma$

$\gamma_{p v}<\gamma$

## Exemplary Post - Expansion in Turbine

Horizontal line at constant $\dot{m}_{\text {corr }}(A-B-C)$

- Point B: sonic throat $(M=1)$
- Point C: post-expansion final state $(M=1.8)$
- Deviation angle increases if $\gamma_{p v}$ decreases



## Exemplary Expansion in Supersonic Turbine

Vertical line at constant $M_{m}$ (D-B-E)

- Constant flow coefficient
- Negligible post-expansion
- $\Delta \dot{\boldsymbol{m}}_{\text {corr }}$ increases if $\gamma_{p v}$ decreases

- Larger area variation to accommodate larger volumetric flow ratio $\alpha=\rho_{t, \text { in }} / \rho_{\text {out }}$



## CFD Verification

Propulsion
\& Power

## Test Cases \& Numerical Setting

## 3D transonic stator vanes

$\left\{\begin{array}{l}\mathrm{iMM}: \quad \beta_{t s}=2.0-2.8-3.4 \\ \mathrm{niMM}: \beta_{t s}=1.8-2.7-3.8\end{array}\right.$

Spatial discretization: $2^{\text {nd }}$ order
Turbulence: $k-\omega$ SST $\left(\mathrm{y}^{+} \leq 1\right)$
Fluid mesh: 5M points
Look-up table: 2.5M (iMM) - 4M (niMM) points


## Results

- 1D model qualitatively in line with CFD if sufficiently far from chocking
- Large deviation in volumetric flow ratio
- $\quad \mathrm{iMM}: \quad \alpha_{t s}=2.2-3.1-3.8$
- niMM: $\alpha_{t s}=1.6-4.0-6.9$





## Physical Insights

- $\gamma_{p v}<\gamma \rightarrow$ larger area variation to accommodate larger $\alpha$ at given $\beta$
- $\quad \gamma_{p v}<\gamma \rightarrow$ larger flow deviation in convergent blade channels



## Take-Away Messages

- Expansions characterized by $\gamma_{p v}<\gamma$ lead to earlier choking and larger flow deviation when fixing $\beta_{t s}$
- Turbines operating with flow $\gamma_{p v}<\gamma$ (ORC) more susceptible to reach complete choking $\rightarrow$ operability/efficiency issues
- Research hypothesis: choice of convergent-divergent nozzle driven by ability to control flow deviation and extend operating range


## Ongoing \& Future Work

- Verify hypothesis by
- Investigate expansion in convergent-divergent nozzles
- Pre-expansion at compressor inlet
- Analysis of compression processes

Further info upon request @
m.pini@ @ududelt.nl \& coworkers


