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Non-ideal Turbine Operating Conditions
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» Heat recovery and ORCs feature a variety of working fluids and operating points
» Fluid properties and inviscid gas dynamics will vary across T-S space

» How does turbine loss vary across this space?



Turbine Loss Correlations

In preliminary design phase, loss correlations are used
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Impact on loss not known



Research Overview

Research Aim

« Form a reduced order model for turbine loss that is fluid independent

Research Objectives

« Develop a generic approach to evaluate loss

» Assess sensitivity of turbine loss to the working fluid



Research Overview

Research Objectives

 Develop a generic approach to evaluate loss



Non-dimensional Parameters

Three non-dimensional parameters were explored within this study:

Exit Mach Number : Mem’z‘

Inlet Compressibility Factor : ZO —

Isentropic Exponent : k — lOg (2) /lOg (ﬁ)
PO PO



Non-dimensional Parameters
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Thermodynamic Design Space

« Aim is to create a design space where Z, and k can be varied independently

* Z, and k are thermodynamically linked
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« Each cross represents a different fluid — designed to match Z, and k
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Peng-Robinson Equation of State
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1. M. T. White and A. |. Sayma. A generalised assesment of working
fluids and radial turbines for non-recuperated
subcritical organic rankine cycles. Energies, 11 (4), 2018.



Thermodynamic Design Space
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Non-dimensional Parameters

» Transport properties not given by EOS

» Constant parameters:

Ve
« Exit Reynolds number : /0_ — 1.7 X% 106
7!
C
pH
e Exit Prandtl number : ? — 0-7

* Molecular viscosity and thermal conductivity varied for each fluid

» Take to be constant throughout flow field i.e. no temperature variation



Geometry Generation
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Research Overview

Research Objectives

» Assess sensitivity of turbine loss to the working fluid



Variation of Loss Coefficient with k
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« Greater variation in loss at higher exit Mach number

« AtZ,=0.8 and 1.0 the loss forms linear monotonic function of k
 Loss becomes less sensitive to k as Z, is reduced

« At Z, = 0.6 non-monotonic behavior is observed for M,,;; = 0.9
* In general - low k means higher loss



Variation of Loss Coefficient with Z

e k=16 CFD —Fk = 1.6 Linear e k=16 CFD —Fk =1.6 Linear
o k=12CFD —Fk = 1.2 Linear o k=12CFD —k = 1.2 Linear
k=09CFD k = 0.9 Linear k=09CFD k = 0.9 Linear
0.06 - 0.08 ¢
® L
~0.058¢ / 007 /
A D
. ] ¢ — 0.07¢
Q 3
~ 0.056 & N
0.065 | — .
0.054 | | \
0.6 0.7 0.8 0.9 1 006" 07 03 09 .
Zy [-] Z
0 [—]
Mezit = 0.9 M, .= 1.3

» Lower variation in loss with Z, compared to k

* Qualitative behaviour is identical between exit Mach numbers
Atk = 1.6 low sensitivity to Z,
» Otherwise, low Z, leads to lower loss



Variation of Loss Coefficient with Mach number 19
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» Loss presented relative air (k=1.4, Z,=1)
» Variation between -2 and 1% for M,,;; = 0.6
* Maximum loss at Z,=1 k=1.05



Impact on Turbine Design

« Correlation defined for each value of M,,;;

C/Cé:m = Oloo + O1ok + 001 Z0 + a0k + a1k Zo + 0(0228

0=1

« RMSD values between 0.6 and 3.2 % - appropriate for preliminary estimate
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Example Application

1000 1500 2000 2500 3000 350!
S [J/keg/K]

j IS W00 ]

12 13 14 15 16 17 18

k
1200 P
1000
. 800 | o
o Z, rising.
600 |
400 |
7 .
1000 1500 2000 2500 3000 3500

S [J/ke/K]
Z, HHEESTT =00 ]
0.8 1 1.2 1.4



Example Application
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Conclusions

Conclusions

» A fluid-independent method for turbine performance has been developed
* Generalised points about loss generation

» Loss increases with reduced isentropic exponent

» Loss reduces with reduced compressibility factor
» Potential to reduce turbine loss through fluid choice and operating point
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Computational Setup

2D RANS simulations undertaken with
FLUENT v17.0

Spalart-Allmaras turbulence model with
wall functions

Thermodynamic modelling achieved
with built-in PR model

Previously validated and verified by
Baumgartner et al.
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Loss coefficient

» Loss coefficient defined based on a constant pressure mixed-out state

« (= H —Hg/Ho — Hj

« H: enthalpy at mixed-out state

* Hs : enthalpy achieved at mixed-out pressure under isentropic conditions

« HO: Total enthalpy at inlet of domain



Thermodynamic Design Space

« Aim is to create a design space where Z, and k

Set w = 0.251 can be varied independently
Set po/pc == 07
SetM =72 g/mol  As Z, and k are thermodynamically linked multiple

fluids required
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