A novel acoustic resonator for speed of sound measurement

Application with siloxane D6

Bertrand Mercier

Nitish B. Chandrasecaran

Piero Colonna

Propulsion & Power, TU Delft Faculty of Aerospace Engineering

Propulsion & Power

©2020 TU Delft The information in this document is the property of TU Delft and may not be copied or communicated to a third party without prior written consent

Context

• Primary objective:

Investigate the propagation of acoustic waves in BZT fluids

• Main challenge:

Siloxane D6 is a promising BZT fluid Thermodynamic model must be consolidated with speed of sound data

Need for a new setup to achieve speed of sound measurements at high pressure and temperature

No rapid source for high temperature No sensitive microphone for high temperature

Measure the speed of sound

Acoustic resonator

Excitating acoustic modes of a cavity

Example: k = 2 m = 0

k: longitudinal modenumber*m*, *n*: transverse modenumbers

Measure the speed of sound

• Resonance frequency for a cavity of length L, width & height H

Sound speed C deduced straightforwardly

Features of the Resonator

• Cylindrical resonator

Delft

284 mm x 40 mm x 40 mm Max pressure : 10 bar / Max temperature 400 °C Sound speed 40 m/s \rightarrow 150 m/s

Calibration of the resonator

$$F_r = \frac{\alpha k}{L} \frac{c}{L}$$

Fr: resonance freq.
k: mode number
c: sound speed
α: calibration constant

Need for high accuracy reference measurements:
 → Available for siloxane D4 and D5 in Nannan *et al. 2007*

$$D_4 - T = 495 \text{ K}$$
 1.4 $D_5 - T = 510 \text{ K}$ 0.9 < p < 1.0 bar

Calibration of the resonator

 $\alpha = 0.986$

 $\sigma_{\alpha} = 0.0016$

Accuracy after calibration: +/- 0.3% (95% CI)

• Data set : 77 conditions explored between 266 °C and 371 °C

• Comparison SoS measurements / cubic EoS (*p*,*T*)

• Comparison SoS measurements / cubic. EoS (*p*, *T*)

• Comparison ρ measurements / cubic EoS (p, T)

• Comparison ρ measurements / cubic. EoS (p, T)

Propulsion & Power

Conclusion

- Accuracy demonstrated to be better than +/- 0.3%
- Speed of sound underestimated by EoS at low pressure
 → Probable overestimation of heat capacities
- Speed of sound increase faster with pressure than EoS prediction along isotherms near BZT region

→ BZT region likely to be larger than expected Need to develop a new equation of state

Thank you

