First Experiments and Commissioning of the ORCHID Nozzle Test Section

Oct 30th, 2020

TUDelft

F. Beltrame, A.J. Head, C. De Servi, M. Pini, F. Schrijer, P. Colonna

RESEARCH QUESTION

HOW ACCURATELY can we predict supersonic

flows of dense organic vapors and supercritical

fluids using complex thermodynamic models

implemented in CFD codes such as SU2?

OBJECTIVES:

- Commission the ORCHID nozzle TS
- Obtain the first experimental data for an initial validation assessment of SU2

DELIVERABLES:

How The Research Question Could Be Answered

1) Design and realization of a nozzle TS

2) Set up the schlieren measurement chain

3) Development of a post processing tool for Mach

number extraction from Schlieren data

General Overview

1. The ORCHID nozzle test section

- Layout
- Schlieren measurement chain and experimental procedure

2. Schlieren Mach line extraction method

- Algorithm overview
- UQ
- 3. Experimental and numerical results comparison

4. Conclusions

ORCHID nozzle layout

Operating conditions

Fluid	Tot. temp. TT015 / °C	Tot. press. P _{SV} 001 / bara	Comp. F. Zt
MM	252	18.4	0.56
Back n	Outlet Mach	Mass flow	
васкр.	Outlet Mach.	WIASS HOW	
PT004 / bara	M_2	FT001 / kg/s	

BOBCAT IGV-B1610 16bit CCD camera

NICFD 2020

for Propulsion & Power

(Maximum resolution: 1628 x 1236 pixels), (Acq. Freq: 24.75 Hz)

Schlieren Measurement Chain and Procedure

Schlieren Mach Line Extraction Method

For each frame

sub-image

For each

Schlieren Mach Line Extraction Tools:

Overview of the core algorithm

Pre-processed schlieren dataset

- Image enhancement
- Binarization
- Canny edge detection
- Calibration
- Discretization
 - Hough transform

Line detection $\leftarrow \rightarrow$ Adapt line parameters

- Best line selection
 - Mach angle and number extraction
 - Calculate local type B uncertainty
- Results analysis and statistics
- Type A uncertainties evaluation + correlations
- RESULTS: SRQ values + total uncertainties

Example of the codes calibration phase results + superimposed binarized image with edges.

Error Source Identification and Uncertainty Quantification

Error sources in the experiment:

INDIRECTLY affecting all the uncertainties of the SRQ

Error Source Identification and Uncertainty Quantification

Uncertainty	Туре	Correlation with:	Error source(s)	Derivation
U _{M,data}	А	U _{M,ext}	BoP, SMC, PPT	$2 \times std.Mach$
U _{M,ext}	Derived from $U_{\mu,ext}$	U _{M,data}	PPT, SMC	$M\sqrt{M^2-1}U_{\mu,ext}$
$U_{\mu,ext}$	Combined	$U_{\mu,data}$	PPT, SMC	$\sqrt{AR_{95}^2 + U_{Hough,res}^2}$
$U_{\mu,data}$	A	$U_{\mu,ext}$	BoP, SMC, PPT	$2 \times std. \mu$
<i>AR</i> ₉₅	Combined	$U_{\mu,data}$	SMC, PPT	$Avg.AR + 2\left(\frac{1}{1+LL^2}\right)u_{LL}$
$U_{Hough,res}$	В	-	PPT	$0.95 \ \frac{\theta_{hough}}{2}$

- Type A: calculated purely by statistical analysis, connected to the small unpredictability and fluctuations;
- **Type B**: instrumentation error, resolution, calibration etc.
- **Combined:** combination of A and B type uncertainties

Numerical Simulations Details

Boundary conditions:

 $P_{in}^{0} = 18.36 \pm 0.18 \ bar$ $T_{in}^{0} = 252.4 \pm 0.69^{\circ} C$ $P_{out}^{0} = 2.06 \pm 0.25 \ bar$.

MM Properties: iPRSV cubic equation of state (FluidProp) + Fourth order polynomial f(T) for the c_P + Chung's transport model

✓ EULER implicit (CFL=20), 10000 elements for grid independent results

✓ RANS closed with SST turbulence model, with additional cells to resolve the walls BL

Experimental and Numerical results comparison

 $P_{in}^0 = 18.36 \pm 0.18 \ bar$ $T_{in}^0 = 252.4 \pm 0.69^0 C$ $P_{out}^0 = 2.06 \pm 0.25 \ bar$.

Experimental and Numerical results comparison

Average extracted Mach lines superimposed on the first schlieren image.

CONCLUSIONS

- 1) The capability of the facility to produce steady state schlieren datasets in the case of supersonic non ideal expansions was proven;
- 2) An ad-hoc methodology to process schlieren data and to extract the flow Mach number and its total uncertainty has been implemented;
- 3) The predicted Mach numbers match well with the experimental results at the initial phases of the expansion and at the end of it;
- 4) The Mach number uncertainty strongly depends on the pixel resolution, brightness level of the image and the FOV;
- 5) The adopted schlieren measurement chain needs an optimization.

Thank you for the attention.

Questions?