

NICFD 2020 for Propulsion & Power

Application of Hot-Wire Anemometry in the High Subsonic Organic Vapor Flow Regime

Felix Reinker M.Eng.

Ph.D. candidate at University of Paderborn & Research assistant at Münster University of Applied Sciences

Ph.D Supervisors: Prof. Dr.-Ing. Eugeny Y. Kenig (University of Paderborn) Prof. Dr.-Ing. Stefan aus der Wiesche (Münster University of Applied Sciences)

Content

- 1. Introduction & Motivation
- 2. Hot Wire Basics
- 3. Experimental Setup
- 4. Experimental Results
- 5. Outlook & Conclusion

Introduction & Motivation

CFD

Wall-resolved LES of transitional supercritical flow of PP11 across the VKI LS89 turbine cascade.

<u>Hot Wire Anemometrie (HWA):</u> **The** classical tool for experimental studies in turbulent flows

Experiment

- ✓ Incompressible flows (deep knowledge)
- Compressible flows (still in focus)

What about dense gases?

- High dynamic loads (High Re-number)
- □ Lifetime (calibration application)
- Effect of thermodynamic fluctuations (velocity vs. density)

Comparison to air experiences

Hot Wire: Basics

<u>Working Principle</u>: Metallic element is heated by electric current (Joule Effect), convective heat transfer to fluid is detected by external circuit. <u>Modes</u>: Constant Current (CCA) & **Constant Temperature (CTA)** <u>Purpose</u>: measuring mean and <u>fluctuating velocity components (?)</u>

→ Turbo machinery flow in general: unsteady & turbulent!

Hot Wire: Flow Regimes

FH MÜNSTER University of Applied Sciences

Partner: SVM-Tec, Stuttgart

HWP10/90G

FH MÜNSTER

Jniversity of Applied Sciences

Signal processing: Highspeed analog input module NI9229 of National Instruments (Delta-Sigma digitizer and analog prefiltering) Sampling rate: 10 kHz Sampling duration: t = 4s. Uncertainty level electrical bridge voltage $\Delta U_{\rm B}/U_{\rm B}$: 1.5 - 2.0% Increased Wire Temperature: T_{w1} = 170°C $\rightarrow T_{w2}$ = 318°C

Free static wall pressure

Inlet with probe-mounting

 $Nu = A(M, \tau) + B(M, \tau) \operatorname{Re}^{1/2}$

Experimental Results

Incompressible Flow – static calibration

0.0

Experimental Results

Incompressible Flow – Turbulence Sphere

Turbulence Sphere Experiment

- Basis: Turbulent transition at critical Reynolds number
- Drag-measurement ($C_D=0.3$) \rightarrow sensible calibration!
- ✓ Pressure Coefficient (Cp=1.22) \rightarrow robust

1.4

1.2

1.0

0.8

0.6

20

3.0

Experimental Results

Incompressible Flow

Experimental Results

High Subsonic static calibration (M=0.3 - 0.7)

Experimental Results

Experimental Results Spectral Analysis (DIAdem)

- Without 2kHz Low Pass Filter
- Ma=0.69 ρ=35 kg/m³
- n=50Hz (3000rpm)
- Re_w: 400 <u>1340</u> 🌂
- Sr=0.21 \rightarrow f_{vt}= 2570 Hz

Compressor rotor:

- 6 main blades
- 6 splitter blades

"Quick & dirty turbulence research"

Conclusion & Outlook

- Hot wire did not break during experiments (robust design)
- Incompressible calibration was successfull (with laminar correlation)
- Compressible high subsonic calibration was also succesfull (lower deviations)
- Organic vapor turbomachinery fluctuations were detectable
- Future research: see REGAL-ORC (2021-2024)

Thanks for your attention ③

