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Importance of Isentropic Exponent (k) 2

• Based upon the variation of pressure and density across an isentropic expansion

• For perfect gas  𝑘 = 𝑐𝑝/𝑐! ;  𝑘 >1

• For real gas       𝑘 ≠ 𝑐𝑝/𝑐!
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Variation of Turbine Loss relative to air1

1. D. Baumgärtner, et al  “The Effect of Isentropic Exponent on Transonic Turbine Performance” 2020



Supersonic Wake Flows 5

• Large portion of vane loss due to the supersonic flow around the trailing edge

Typical Supersonic Trailing Edge Flow2

2. Durá Galiana, F. J. et al.  "A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines."  2016



Trailing Edge Loss in ORC Vanes 6

• Large portion of vane loss due to the supersonic flow around the trailing edge

• Currently there is a lack of experimental data for ORC trailing edge flows

Typical Supersonic Trailing Edge Flow2

2. Durá Galiana, F. J. et al.  "A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines."  2016



Research Overview

Research Aims

• Provide a detailed experimental data of an ORC wake flow

• Identify how the isentropic exponent affects wake flows  
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Variable Fluid Test Rig 9

5 m



Working Section 10

• Geometry design based on air as a working fluid 

• Geometry held constant for each fluid, hence exit Mach number varies

• Wind tunnel has short run times ~100ms: traverse obtained through casing rotation

• Major Challenges:

• Small scale (TE = 0.25mm) so avoiding blockage is key – bespoke probe design required

• Repeatable results needed  - wake traverse requires separate runs

Design Parameters

Mach number 1.45

Isentropic exponent 1.4

Inlet flow angle 0°

Exit flow angle 75°

0.25mm

Traverse location

2o steps1o steps 

wake region



Supersonic Probe Design 11

Mach

circular probe wedge probe

• First iteration of probe design was circular 
• Relatively large probe required due to mechanical requirements
• Caused large interference with vane 
• Wedge supported pitot probe developed

Distribution of Mach number with Probe



Supersonic Probe Design 12

blade TE

hub

rotating casing

CAD Representation of Probe

0.4mm

Photograph of Probe

• Probe machined in-house from aluminum 
• Stainless steel hypodermic tubing glued into wedge shape 
• Positioned at mid-span
• Rotatable around own axis – aligned with freestream flow 



Test Section Afterbody 13

Afterbody

• Repeatability improved with the introduction of second throat downstream of   
• Also gave control of cascade pressure ratio
• Improved run-to-run repeatability  
• Reduced noise in quasi-steady flow region 

Repeatability of Wall Static Measurements



Location of Wake Traverse 14

Shock reflection

CFD : Rans with ANSYS Fluent, wall functions and SA turbulence model  

Wake
Fan 
Shock reflection

traverse
location

13 2

Mach number contour for air (CFD) 

Mach number

3 2
Traverse location 

Main flow features:
1. Blade Wake 
2. Expansion Fan
3. Reflected shock 

Mach Number Distribution at midspan (CFD)

Blade pitch



Experimental Wake Measurements 15
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Comparison of Measurements and CFD 16
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Research Overview

Research Aims

• Provide a detailed experimental data of an ORC wake flow

• Identify how the isentropic exponent affects wake flows  
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Effect on Wake at Constant exit Mach Number

• Experimental data obtained at constant 
pressure ratio  - not constant loading

• 2D CFD used to achieve dynamic similarity 

• Reynolds Number

• Exit Mach number - hence blade loading

• Mixed-out loss coefficient higher for R134a 
(low 𝑘)

19

Variation of Loss with exit Mach number 

Air k = 1.40
R134a k = 1.07



Effect on Wake at Constant exit Mach Number 20

• Isolines at 𝑀 = 0.5 and 
𝑀 = 1.0

• Smaller separated base 
region for R134a

• Occurs due to more 
flow turning around TE

Distribution of Mach number at trailing edge
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Distribution of Mach number



Effect on Wake at Constant exit Mach Number 22

• At cut 1 lower 𝑘 leads to narrower and shallower wake 
• This is due to smaller separated base region
• Loss coefficient is the same for the fluids   

0 0.2 0 0.2



Effect on Wake at Constant exit Mach Number 23

• At cut 2, the wake is still narrower and shallower 
• However, loss coefficient has increased for R134a compared to air

0 0.2 0 0.2



Effect on Wake at Constant exit Mach Number 24

• R134a wake is subject to a larger pressure gradient along wake centreline
• At constant 𝑀"#$% lower 𝑘 will have higher pressure at outlet

• Larger adverse pressure gradient and hence more loss

Wake 
centreline



Conclusions

Conclusions

• Reported first-of-their-kind supersonic R134a vane wake measurements

• Open-source geometry and data for use as a validation case - contact aw329@cam.ac.uk

• At constant exit Mach number:

• Wake becomes shallower and narrower at lower isentropic exponent

• Larger adverse pressure gradient in wake drives higher loss for lower isentropic exponent 
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