The Effect of Isentropic Exponent on Supersonic Turbine Wakes

David Baumgärtner

John Otter

Andrew Wheeler

October 30th 2020

NICFD 2020, Delft University of Technology

NICFD 2020for Propulsion & PowerOctorDef

Importance of Isentropic Exponent (k)

$$k = \frac{\rho}{p} \left(\frac{\partial p}{\partial \rho}\right)_s$$

- Based upon the variation of pressure and density across an isentropic expansion
 - For perfect gas $k = c_p/c_v$; k > 1
 - For real gas $k \neq c_p/c_v$

Effect of Isentropic Exponent (k)

1D

Importance of Isentropic Exponent (k)

Supersonic Wake Flows

• Large portion of vane loss due to the supersonic flow around the trailing edge

Typical Supersonic Trailing Edge Flow²

2. Durá Galiana, F. J. et al. "A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines." 2016

Trailing Edge Loss in ORC Vanes

- Large portion of vane loss due to the supersonic flow around the trailing edge
- Currently there is a lack of experimental data for ORC trailing edge flows

Typical Supersonic Trailing Edge Flow²

2. Durá Galiana, F. J. et al. "A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines." 2016

Research Overview

Research Aims

- Provide a detailed experimental data of an ORC wake flow
- Identify how the isentropic exponent affects wake flows

Research Overview

Research Aims

- Provide a detailed experimental data of an ORC wake flow
- Identify how the isentropic exponent affects wake flows

Variable Fluid Test Rig

Working Section

- Geometry design based on air as a working fluid
- Geometry held constant for each fluid, hence exit Mach number varies
- Wind tunnel has short run times ~100ms: traverse obtained through casing rotation
- Major Challenges:
 - Small scale (TE = 0.25mm) so avoiding blockage is key bespoke probe design required
 - Repeatable results needed wake traverse requires separate runs

Supersonic Probe Design

Distribution of Mach number with Probe

- First iteration of probe design was circular
- Relatively large probe required due to mechanical requirements
- Caused large interference with vane
- Wedge supported pitot probe developed

Supersonic Probe Design

CAD Representation of Probe

Photograph of Probe

- Probe machined in-house from aluminum
- Stainless steel hypodermic tubing glued into wedge shape
- Positioned at mid-span
- Rotatable around own axis aligned with freestream flow

Test Section Afterbody

	tapered afterbody	choked afterbody
$\sigma_{run-to-run}$	2.46%	0.5736%
$\overline{\sigma}_{ ext{during run}}$	0.567%	0.201%

Repeatability of Wall Static Measurements

- Repeatability improved with the introduction of second throat downstream of
- Also gave control of cascade pressure ratio
- Improved run-to-run repeatability
- Reduced noise in quasi-steady flow region

Location of Wake Traverse

- 1. Blade Wake
- 2. Expansion Fan
- 3. Reflected shock

CFD : Rans with ANSYS Fluent, wall functions and SA turbulence model

Experimental Wake Measurements

Comparison of Measurements and CFD

Comparison of Measurements and CFD 17

Wall Static Measurements

Research Overview

Research Aims

- Provide a detailed experimental data of an ORC wake flow
- Identify how the isentropic exponent affects wake flows

- Experimental data obtained at constant pressure ratio - not constant loading
- 2D CFD used to achieve dynamic similarity
 - Reynolds Number
 - Exit Mach number hence blade loading
- Mixed-out loss coefficient higher for R134a (low k)

Variation of Loss with exit Mach number

$$\zeta = (H - H_s)/(H_o - H_s)$$

Distribution of Mach number at trailing edge

- Isolines at M = 0.5 and M = 1.0
- Smaller separated base region for R134a
- Occurs due to more flow turning around TE

Distribution of Mach number

- At cut 1 lower k leads to narrower and shallower wake
- This is due to smaller separated base region
- Loss coefficient is the same for the fluids

- At cut 2, the wake is still narrower and shallower
- However, loss coefficient has increased for R134a compared to air

- R134a wake is subject to a larger pressure gradient along wake centreline
 - At constant M_{exit} lower k will have higher pressure at outlet
- Larger adverse pressure gradient and hence more loss

Conclusions

Conclusions

- Reported first-of-their-kind supersonic R134a vane wake measurements
- Open-source geometry and data for use as a validation case contact <u>aw329@cam.ac.uk</u>
- At constant exit Mach number:
 - Wake becomes shallower and narrower at lower isentropic exponent
 - Larger adverse pressure gradient in wake drives higher loss for lower isentropic exponent

<u>Acknowledgements</u>

- This work was supported by the EPSRC (EP/L027437/1) and computational resources were provided by EPSRC Tier-2 capital grant EP/P020259/1.
- The authors would like to thank the reviewers for their insightful comments and valuable feedback
- In additional the authors would like to thank the NICFD2020 organising committee

QUESTIONS

- 1. D. Baumgärtner, J. J. Otter, and A. P. S. Wheeler. The Effect of Isentropic Exponent on Transonic Turbine Performance. Journal of Turbomachinery, 142(8), 07 2020. 081007.
- 2. Durá Galiana, F. J. et al. "A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines." ASME. *J. Turbomach*. 2016;