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Motivation

sCO2-Power Systems

Characteristics

 Low compression work

 Small scale of turbomachinery

 Comparatively high efficiency

in the mild turbine inlet temperature range 

(450 - 600°C)

Application Areas

 Nuclear energy

 Topping cycle for fossil fueled power plants

 Bottoming cycle for gas combined cycles

 Exhaust/waste heat recovery

 Renewable energy

pcrit: 73.8 bar 

Tcrit:  30.98 °C 

CO2
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Motivation

Challenges for compressor design and analysis

 Non-ideal thermophysical properties

 Possibility of two-phase flows (locally)

 Rapidly changing fluid properties in the

vicinity of the critical point
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Motivation

Scope of work

 Extension of the in-house CFD solver to account for thermophysical properties of sCO2

with high degree of accuracy and numerical stability

• Span-Wagner multiparameter EOS is too computationally expensive

• Integration via Spline Based Table Lookup Method [1,2]

 Validation of the CFD framework for sCO2 compressor performance and flow field

assessments

• Lack of fully documented experimental test cases

• Investigation of a geometry based on the main dimensions of the SNL main

compressor

 Development and validation of a sCO2 compressor performance meanline analysis tool

• Further reference for performance assessments

• Breakdown of individual loss contributions
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Test Case Description

SNL Compressor

 Candidate geometry based on main dimensions of the

SNL compression test-loop main compressor

• Backward swept impeller with splitter blades and a 

channel diffuser

• Design specifications: 

50 kWe / 75 krpm / 3,54 kg∙s-1 / ηts≈ 66% / π = 1,8

T0,in/Tc ≈ 1.004, p0,in/pc ≈ 1.04

 Restrictions

• Main dimensions reported partially

• No blade coordinates accessible

 Correct reconstruction of blade angle and      

thickness distribution is not possible

 Simplifications in this preliminary study

• No tip clearance modeled

• No diffuser modeled

CAD model of the investigated impeller geometry 

Part drawing and photograph of the SNL main compressor [3]

d2 ≈ 37 mm
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Methodology

CFD Solver

 In-house density based solver

 Hybrid parallelization

 Complex thermodynamic applications

DNS/LES

CONDENSING WET 

STEAM (LES) [5]

ORC [4]
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Methodology

Real Gas Property Tabulation

 Spline Based Table Lookup Method (SBTL) [1,2]

• Biquadratic polynomial spline interpolation

• Continuous first derivatives

• Numerically fast and consistent backward

functions

• Constructed on piecewise equidistant nodes

 Tabulated data is based on the Span-Wagner 

reference EOS [6] and correlations for viscosity

and thermal conductivity [7,8]

 Perimissible deviations are within uncertainties

of the underlying equations/correlations

Permissible deviations of spline-functions (CO2 application) 

[1] M. Kunick. "Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the 

Spline-Based Table Look-Up Method (SBTL)". Fortschrittberichte VDI, Nr. 618, Reihe 6,  

Energietechnik, 2018.

[2] M. Kunick et al. "CFD Analysis of Steam Turbines With the IAPWS Standard on the Spline-Based 

Table Look-Up Method (SBTL) for The Fast Calculation of Real Fluid Properties". Proceedings of 

ASME Turbo Expo 2015, ASME Paper No. GT2015-43984, 2015.

[16]

[16]
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Methodology

Meanline Analysis Method

 Single-zone modeling approach

 Implemented in PYTHON with direct calls 

to the CoolProp [9] property library

 Applied loss model set is based on an 

optimised and validated set of internal and 

external loss for conventional centrifugal

compressors (Oh et al. [10])

 Wiesner slip correlation [11] is applied

in
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Methodology

Numerical Setup

 Steady state RANS simulations

• Second order AUSM+scheme [12]

• Implicit LUSGS scheme

 Spalart-Allmaras turbulence model [13]

 Homogenous equilibrium mixture (HEM)

 Block structured mesh

• No wall functions: y+ < 5

• ≈ 1.7 mio. cells for single main + splitter blade

 Single domain, no interface

Outlet: static pressure

Inlet: 

- Total temperature

- Total pressure

- Uniform and normal flow

Periodic

boundariesVaneless 

space
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Compressor Performance

Investigated Compressor Operating Conditions

 Based on experimental campaigns of

Wright et al. [3,14] and Fuller & Eisemann [15]

• A: Near-Critical Inlet State

77.50 bar, 307 K

• B: Gaseous Inlet State,

Potentially relevant during cycle startups

67.93 bar, 301 K

 50 krpm speedline calculation (off-design) 

 most data available

 Experimental performance assessments 

(total-to-static) are interpreted to be associated 

with the impeller wheel (static pressure tap at 

impeller exit)

 Strong variation of experimental inlet states

 corrected and non-dimensional performance 

map representation

Static pressure tap

[3]
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Compressor Performance

Performance Assessment

𝜙 =
4  𝑉1

𝜋𝑑2
2𝑢2

𝜓 =
ℎ2𝑠 − ℎ01

𝑢2
2

𝜂𝑠 =
ℎ2𝑠 − ℎ01
ℎ02 − ℎ01

𝑦

 𝑉1
𝜂

N

N

 𝑉1

𝜓

𝜂

dimensional non-dimensional

𝜙

𝜙

Flow Coefficient

Head Coefficient

Isentropic Efficiency

𝑝01, 𝑇01

𝑀𝑎𝑢

𝑀𝑎𝑢



Renan Emre Karaefe | Ruhr-Universität Bochum | NICFD 2020 Hybrid Event, October 29-30, TU Delft Slide 13

State A: Near Critical Operation

 RANS

• Flatter head characteristic

• Reduced efficiencies

• Surge comparable

 Meanline

• Slope of head curve shows

better agreement with RANS

• Sensitive towards inputs of

the parameter 𝜀 for high flow

coefficients

• Consideration of tip

clearance: 7-14 % decreased

head generation, 

4-6 percentage points

decreased efficiency

Compressor Performance

Compressor Performance

𝜀: fraction of blade to blade space occupied by the wake
(Mixing loss model of Johnston & Dean)
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State B: Gaseous Operation

 Almost no difference compared

to state A

 High degree of machine

similitude

Compressor Performance

Compressor Performance

𝜀: fraction of blade to blade space occupied by the wake
(Mixing loss model of Johnston & Dean)
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Compressor Performance

Meanline Loss Distribution

 Clearance loss with significant share

over the entire flow range (≈ 40 %)

SNL: 
𝛿

𝑑2
≈ 0.007

Eckardt Impeller: 
𝛿

𝑑2
≈ 0.001

State A
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Compressor Performance

Meanline Loss Distribution

 Clearance loss with significant share

over the entire flow range (≈ 40 %)

SNL: 
𝛿

𝑑2
≈ 0.007

Eckardt Impeller: 
𝛿

𝑑2
≈ 0.001

 Wake mixing losses dominant at high flow

coefficients

• Explains high sensitivity of 𝜀 in 

performance curve derivation

State A
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Compressor Performance

Meanline Loss Distribution

 Clearance loss with significant share

over the entire flow range (≈ 40 %)

SNL: 
𝛿

𝑑2
≈ 0.007

Eckardt Impeller: 
𝛿

𝑑2
≈ 0.001

 Wake mixing losses dominant at high flow

coefficients

• Explains high sensitivity of 𝜀 in 

performance curve derivation

 Shares at state B almost identical due to 

similitude of velocity triangles

State AState B
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Flow Field Analysis

Vapour-Liquid Region

 Points within the vapour-liquid region

detected for all simulations

 Located near the impeller leading edges

 Caused by flow acceleration at the suction 

side

 Small volume fraction of entire domain

• State A simulations: < 0.02 %

• State B simulations: < 1.1 % 

(closer location to the VL-region)

Current limitations:

 Simulations do not account for metastable

states

 Non-equilibrium condensation is not 

modeled

scatter plot of solution domain
isocontours of points 

within the VL-region

contours of relative Mach 

number at 75 % span
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Evaluation of computational speed

Benchmark

 IG and PR simulations performed without 

tabulation

 Direct calls to REFPROP library

 Further reduction of overhead might be 

expected in future versions of the SBTL 

library (2 % overhead demonstrated for the 

highly optimised steam version)

[16]
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Conclusion and Future Work

Conclusion

 Reasonable performance metrics are derived for two operating states despite approximations of

the candidate compressor geometry

 High degree of machine similitude observed for both operating states

 Finding suggests that non-dimensional sCO2 performance testing could be numerically and 

practically conducted at inlet states with less pronounced gradients in thermophysical

properties

 Compressor operation close to the VL-region might potentially lead to condensation of a small

volumetric region

 Meanline loss distributions indicate tip clearance as a dominant loss contributing factor over the

entire operating range

 CFD Framework comprising the SBTL library allows for accurate calculations within the range of

uncertainties of the EOS at comparatively low computational overhead (33 % compared to IG)

 Integration of metastables states and assessment of non-equilibrium condensation

 Extension of the geometry to account for the channel diffuser

Future Work
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