
Thematic workshop on Thermodynamic ModelingThematic workshop on Thermodynamic Modeling
Ian H. Bell

National Institute of Standards and Technology, Boulder, CO, USA

OutlineOutline
About Me
Introduction/Scope
Thermodynamic Properties and Equations of State
Building an EOS
Flash Routines and Phase Equilibria: Pure Fluids
Transport Properties
Mixtures

About MeAbout Me

Doctoral Research at Purdue University

Flooded compression in scroll compressors
Oil absorbs the heat of compression of the refrigerant
Increase cycle ef�ciency with IHX and oil �ooding

Experimental campaigns

Dissertation

Theoretical and experimental analysis of liquid �ooded compression in scroll
compressors

Postdoc, 2012-2014, University of Liège, Liège, Belgium

Simulation of scroll compressors
Development of open-source thermophysical property library CoolProp

Postdoc, 2015-present, National Institute of Standards and Technology, Boulder,
Colorado

Development of mixture models, equations of state, etc.
Critical point calculation routines
Psychrometric properties from mixture models

IntroductionIntroduction

Today: compressible/real pure �uids and mixtures
Not: humid air, incompressible �uids (brines and secondary working �uids)
Today's goal: Crack open the black boxes of thermophysical property libraries
(REFPROP, CoolProp, TREND)

What properties do we care about?What properties do we care about?
For preliminary cycle design:

Temperature:
Pressure:
Density:
Speci�c enthalpy:
Speci�c entropy:
Speci�c heat capacity:

For component design:

Thermal conductivity:
Viscosity:

T
p
ρ

h
s

,cp cv

λ
η

Thermodynamic Properties and Equations of StateThermodynamic Properties and Equations of State

-- -- properties properties
We can measure pressure, temperature, and density (and other things like speed-
of-sound)
Q: How do we describe the relationship between these properties?

p ρ T

A: An equation of state

Equation of stateEquation of state
Expresses relationship between thermodynamic properties
Wikipedia has nice treatment
Active �eld of research in last century+, will not cover whole �eld here
But highest accuracy formulations (discussed here), are much more complex

Starting at the beginning, the ideal gas law:

All units are molar-speci�c base-SI:

[] = Pa
[] = mol/m
[] = 8.314462618... J/(mol K) (exact)
[] = K

p = ρRT

p
ρ 3

R
T

Ideal-Gas Law LimitationsIdeal-Gas Law Limitations
Low pressure gases only
Doesn't work well near saturation
Not so great for polar �uids either
Doesn't give you entropy/enthalpy directly
But in some cases, it's good enough, or it serves as a good guess

Cubic Equations of StateCubic Equations of State
van der Waals (1873):

SRK (1972):

Peng Robinson (1976):

p = −
RT

v − b

a

v2

p = −
RT

v − b

a

v(v + b)

p = −
RT

v − b

a

+ 2bv −v2 b2

Can be expressed in a common form (Michelsen):

Can be converted to Helmholtz energy according to the method of Bell and
Jäger (J. Res. NIST, 2016)

p = −
RT

v − b

a

(v + b)(v + b)Δ1 Δ2

αr

Cubic Equations of State:

Valid over entire surface (liquid, vapor, supercritical)
Accuracy for VLE is adequate
Simple to understand and implement
Even now quite popular in industry (with some modi�cations)
If , are known, explicit solution for (actually) possible:

Number of roots can be as many as 3 (for instance in VLE)

Limitations

Accuracy for liquid density is quite poor (can be off by 30% - volume translation can
help)

T p v Z = pv

RT

A + B + CZ + D = 0Z3 Z2

Multiparameter EOSMultiparameter EOS
Nowadays, we have developed more accurate formulations for pure �uids
They are explicit in Helmholtz energy (yet another mysterious thermodynamic
property) as a function of volume and temperature
Split into two parts:

a = +ar a0

α = = +
a

RT
αr α0

FeaturesFeatures
Highest accuracy for VLE and single-phase state
Valid over entire surface (liquid, vapor, supercritical)

LimitationsLimitations
Complex to implement slow(er)
No explicit solution for density given , as input variables
Flexibility of form yields some "crazy" behavior if you are not careful

→
T p

Thermodynamic potentials (why Thermodynamic potentials (why ?)?)

There are four primary fundamental thermodynamic potentials (though others
exist)

A

s, v → u
s, p → h
v,T → a
p,T → g

Thermodynamic potential allows ANY other thermodynamic property to be
obtained by derivatives of the potential with respect to independent variables
Cannot measure entropy, though, so or are the choices for potential
Gibbs energy derivative discontinuous in at phase transitions, also not good
Helmholtz energy it is!

a g
T , p

Di�ering levels of precisionDi�ering levels of precision
Reference

Exceptionally high accuracy EOS based on very accurate experiments
E.g. Argon, Nitrogen, CO , Water, Methane, Ethylene

Industrial
Many �uids, using functional forms proven to work well
Some generalized formulations, with only the coef�cients being �tted

2

Uncertainty of water density (Wagner & Pruss, JPCRD, 2001)Δρ

Ideal-gas partIdeal-gas part

Total Helmholtz is energy given by: on a speci�c basis

Or non-dimensionalized:

But we know that , and for an ideal gas because
, therefore

a = u − Ts

= α = −
a

RT

u

RT

s

R

u = h − pv u = h − RT
pv = RT

= − 1 −α0 h0

RT

s0

R

Residual partResidual part
Entirely empirical, not governed by theory

For instance, for propane:

Here we use reduced variables and

Water and CO have complicated non-analytic terms that have fallen out of favor

αr = + exp(−)∑
k=1

5

Nkδ
dk τ tk ∑

k=6

11

Nkδ
dk τ tk δlk

+ exp(− (δ − − (τ −)∑
k=12

18

Nkδ
dk τ tk ηk εk)2 βk γk)2

δ = ρ/ρc τ = /TTc

2

Useful relationships:Useful relationships:

And so on...
Valid for pure �uids or multi-�uid mixture model (see later)
"Flash" call can be computationally very expensive; we will revisit this point

p = ρRT [1 + δ]()∂αr

∂δ τ

= τ [+] + δ + 1
h

RT
()∂α0

∂τ δ

()∂αr

∂τ δ

()∂αr

∂δ τ

= τ [+] − −
s

R
()∂α0

∂τ δ

()∂αr

∂τ δ

α0 αr

Flash Routines and Phase Equilibria: Pure FluidsFlash Routines and Phase Equilibria: Pure Fluids

What is a �ash calculation?What is a �ash calculation?
The EOS has as independent variables (as) and (as)
But often you know other thermodynamic variables:

 and
 and

...
Must iterate to �nd and (�ash)
Phase equilibria also possible inputs

 and vapor quality
 and vapor quality

Sometimes, inputs can yield multiple solutions (or)

T τ ρ δ

p h
p T

T ρ

T
p

T ,u T ,h

PT �ashPT �ash

Simplest �ash calculation, but not simple !

PT for water

ρ = f(T , p)

Q1: Where am I?
Q2: Given my location, what information do I know?

gas/supercritical: ideal-gas/SRK ok as �rst guess for (explicit solution)
liquid: density is greater than saturated liquid density (for)

ρ
p < pc

Algorithm
Given the guess density, drive the residual function to zero

Here it is a one-dimensional function of , and we know the analytic
derivatives

Use Secant or Halley's method for

Also possible to use Brent's method with quadratic updates if you have
bounds, correct solution with Secant/Halley not guaranteed

F (ρ)
F (ρ) = p(T , ρ) − pgiven

ρ

and()∂p

∂ρ T

()p∂2

∂ρ2
T

F (ρ) → 0

Phase Equilibria (Pure Fluid)Phase Equilibria (Pure Fluid)

At vapor-liquid equilibrium:

Vapor and liquid phases at same (thermal equilibrium)
Gibbs energy the same for both phases (chemical equilibrium)

Rate(!) of material transfer is balanced

Metastability not considered

T , p

HS �ashHS �ash

MixturesMixtures

Why mixtures?
Environmental concerns (ODP, GWP, �ammability, etc.)
Much more complex to model
New "interesting" things to worry about (composition, phase stability,
critical points)
Many blends form "boring" mixtures that behave like pure �uids

Mixture modelingMixture modeling
GERG formulation for αr

= +αr αr
LM αr

A

(δ, τ, x) = (δ, τ)αr
LM ∑

i=1

N

xiα
r
oi

(δ, τ, x) = (δ, τ)αr
A ∑

i=1

N−1

∑
j=i+1

N

xixjFijα
r
ij

Reducing functionsReducing functions
 and

Adjustable parameters: , , , for pair

Parameters are entirely empirical

τ

= Tr

(x)

/T

δ

= ρ

/ρr

(x)

(x) = + 2 (Tr ∑
i=1

N

x2
iTc,i ∑

i=1

N−1

∑
j=i+1

N

βT,ijγT,ij

(+)xixj xi xj

+β2
T,ijxi xj

Tc,iTc,j)
0.5

1

(x)ρr

= ∑
i=1

N

x2
i

1

ρc,i

+∑
i=1

N−1

∑
j=i+1

N

βv,ijγv,ij

(+)xixj xi xj

+β2
v,ijxi xj

1

4
+

⎛
⎝

1

ρ
1/3
c,i

1

ρ
1/3
c,j

⎞
⎠

3

βT,ij γT,ij βv,ij γv,ij ij

Reducing functionsReducing functions
Binary interaction parameter selection
What , should I use?

1. Fitted parameters from literature
2. Estimation schemes (WARNING!!)
3. Simple mixing rules (linear, Lorentz-Berthelot) (WARNING!!)

β γ

Simple mixing rulesSimple mixing rules

R32-Propane p-x plot at 250 K

Fit your own parameters!Fit your own parameters!
Work developed at NIST
Interaction parameters �t for more than 1000 mixtures
Fully-automatic �tting of parameters and

Open-source formulation using python and DEAP, powered by REFPROP
For source code, email ian.bell@nist.gov

βT,ij γT,ij

Vapor-liquid equilibriaVapor-liquid equilibria
Complex and quite challenging !!
Equate fugacities and moles of each component
Obtaining initial guess for composition particularly challenging

Common types of calculations:

PQ: , at saturation ,
PQ: , at saturation ,
TQ: , at saturation ,
TQ: , at saturation ,
PT: ,

Often, we "solve" these problems by constructing phase envelopes and
interpolating

p x → T y

p y → T x

T x → p y

T y → p x

T p→ x, y

Phase envelopePhase envelope
What is a phase envelope?

The "vapor pressure" curve for a mixture
For a "mixture" that is actually a pure �uid, it is a single line

Closed phase envelope of near-azeotropic mixtureClosed phase envelope of near-azeotropic mixture

50/50 molar R32-R125 phase envelope

Closed phase envelope of large-temperature-glide mixtureClosed phase envelope of large-temperature-glide mixture

50/50 molar pentane-methane phase envelope

Open phase envelopeOpen phase envelope

50/50 molar nitrogen-decane phase envelope

Critical linesCritical lines
Pure �uid: one critical point
Mixture: critical lines

Critical pressure for R-1234yf + R-32 mixture

Thermophysical Property LibrariesThermophysical Property Libraries

Quite a lot of options, depending on your needs:

REFPROP (NIST)
CoolProp
TREND (Bochum, Dresden)
ASPEN
PRODE
...

State-of-the-art librariesState-of-the-art libraries

REFPROPREFPROP
The reference thermophysical property library
Development currently proceeds at a slow pace STABLE
Industry standard!

→

State-of-the-art librariesState-of-the-art libraries

CoolPropCoolProp
+: Open-source, free for all uses
+: Most user-friendly interface (similar interface available in REFPROP)
+: Tabular interpolation, incompressible �uids, brines, psychrometric properties
-: Mixture �ash routines not competitive with REFPROP

State-of-the-art librariesState-of-the-art libraries

TRENDTREND
+: Good support on complex phase equilibria (hydrate and solid phases)
-: Not very fast

Interfacing with REFPROPInterfacing with REFPROP

Calling REFPROPCalling REFPROP
Call REFPROP directly

Fastest option (especially in FORTRAN)
Interfacing with DLL

Things to worry about because of FORTRAN (name mangling,
strings, etc.)
Verbose for simple problems
Inconsistent set of units

Calling REFPROPCalling REFPROP
Call through CoolProp

Easy-to-use interface for REFPROP consistent with interface of CoolProp
Consistent base-SI units
Very easy-to-use wrappers for comprehensive range of target
environments (C++, python, MATLAB, Excel, Java, ...) that are both simple
to understand and introduce little computational overhead.
Input arguments described:
http://www.coolprop.org/coolprop/HighLevelAPI.html#table-of-string-
inputs-to-propssi-function
(http://www.coolprop.org/coolprop/HighLevelAPI.html#table-of-string-
inputs-to-propssi-function)

http://www.coolprop.org/coolprop/HighLevelAPI.html#table-of-string-inputs-to-propssi-function

Calling REFPROPCalling REFPROP
Call through ctypes-based interface for Python

Developed by me
Also allows calling from MATLAB, Julia, etc.

https://github.com/usnistgov/REFPROP-wrappers
(https://github.com/usnistgov/REFPROP-wrappers)

https://github.com/usnistgov/REFPROP-wrappers

Order of operations
SETUPdll or SETMIXdll
TPFLSHdll (or others) to get ,

Or use the new REFPROPdll function
T ρ

The �rst calculation - NBP of waterThe �rst calculation - NBP of water
In [17]: import CoolProp.CoolProp as CP

from CoolProp.CoolProp import PropsSI
PropsSI('T','P',101325,'Q',0,'REFPROP::Water')

Remember: all units are base-SI

Out[17]: 373.1242958476953

ExcerciseExcercise
Calculate the vapor pressure curve of R125 from the triple-point to critical point

In [4]: ### To be filled in live ###
import CoolProp.CoolProp as CP
import numpy as np

Tt = CP.PropsSI('T_triple','REFPROP::R125')
Tc = CP.PropsSI('Tcrit','REFPROP::R125')
Ts = np.linspace(Tt, Tc-0.001, 4)
ps = CP.PropsSI('P','T',Ts,'Q',0,'REFPROP::R125')
print(ps)

[2.91404173e+03 1.17183940e+05 9.21353723e+05 3.61784354e+06]

Single-phase DerivativesSingle-phase Derivatives
= =()∂A

∂B C

−()∂A
∂τ δ

()∂C
∂δ τ

()∂A
∂δ τ

()∂C
∂τ δ

−()∂B
∂τ δ

()∂C
∂δ τ

()∂B
∂δ τ

()∂C
∂τ δ

N

D

In [11]: ### To be filled in live c_p = ??; key for c_p is C, d(Hmass)/d(T)|P ###
print(CP.PropsSI('C','T',298,'P',101235,'Water'))
print(CP.PropsSI('d(Hmass)/d(T)|P','T',298,'P',101235,'Water'))

4181.377468575649
4181.377468575648

Mixtures: prede�ned, pseudo-pureMixtures: prede�ned, pseudo-pure
NBP of liquid R410A

Mixtures can be modeled:
As a pure �uid (for R410A, R404A, SES36, etc.) - limited number, only
single-phase
As a mixture with prede�ned composition - using mixture model but
composition imposed
As a mixture with user-speci�ed composition

In [12]: from CoolProp.CoolProp import PropsSI

Treating the mixture as a pure fluid
print(PropsSI('T','P',101325,'Q',0,'REFPROP::R410A'))

Using the mixture model with the "fixed" composition of R410A
print(PropsSI('T','P',101325,'Q',0,'REFPROP::R410A.mix'))

Using the mixture model with the molar composition specified
print(PropsSI('T','P',101325,'Q',0,'REFPROP::R32[0.69761]&R125[0.30239]'))

221.7081279166191
221.70710547048648
221.70711662650234

REFPROP through CoolProp (low-level)REFPROP through CoolProp (low-level)

Why low-level interface ?Why low-level interface ?
Closer to the compiled code
Less overhead (integer-values only)
More caching of values, reduce duplication of �ash routines

In [13]: # Preparation and imports
from __future__ import print_function
import CoolProp, CoolProp.CoolProp as CP, numpy as np
import matplotlib.pyplot as plt

Print some information about the versions in use
print(CoolProp.__version__, CoolProp.__gitrevision__)
print(CP.get_global_param_string("REFPROP_version"))

6.4.0 fcc01ad6b9739346273713b59af306d5cd9b7d24
10.0

In [14]: AS = CP.AbstractState('REFPROP','Water') # Single SETUPdll call!
AS.update(CP.DmassT_INPUTS, 1, 1000)
print(AS.p(),'Pa')

In [15]: %timeit AS.update(CP.DmassT_INPUTS, 1, 1000)
%timeit AS.update(CP.PT_INPUTS, 101325, 300)
%timeit AS.update(CP.PT_INPUTS, 101325, 1000)

460975.82625354873 Pa

1.99 µs ± 260 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.73 µs ± 238 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.41 µs ± 377 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Phase envelopePhase envelope
In [18]: AS = CP.AbstractState('REFPROP','CO2&Propane')

AS.set_mole_fractions([0.3,0.7])
AS.build_phase_envelope("")
PE = AS.get_phase_envelope_data()
plt.yscale('log')
plt.gca().set(xlabel='T / K', ylabel='p / Pa')
plt.plot(PE.T, PE.p);

Computational Speed ConsiderationsComputational Speed Considerations
My code is too slow!!

Classical approachesClassical approaches

Use the right independent variables

Reformulate problem in terms of density and temperature
Will in almost all cases be the fastest inputs
See for instance my dissertation, conversion from UM to DT in PDSim

Simpler EOS

Use cubic EOS in place of Helmholtz-energy-based EOS
Much faster to evaluate

Classical approachesClassical approaches

Skip phase evaluation

If inputs are known to be gas, don't check whether liquid/gas/supercritical
REFPROP: use PHFL1 instead of PHFLSH, etc.
CoolProp: call specify_phase

Provide initial guess values (for , , , etc.)

REFPROP
Some specialized �ash routines like SATTP that use guesses, see
also TPRHO
Many wrappers around REFPROP do not expose these
specialized functions

CoolProp: call update_with_guesses

ρ x y

Classical approachesClassical approaches

Ensure that you are limiting the number of setup calls

REFPROP: Don't call SETUPdll very often, put multiple components in a

mixture and set mole fractions
CoolProp: Construct an instance of AbstractState, and then use it

Minimize calling overhead

Use vectorized functions when possible

Bicubic interpolationBicubic interpolation

In [20]: import CoolProp
z = [0.5, 0.5]
BICU = CoolProp.AbstractState('BICUBIC&HEOS',
 'R32&R125')
BICU.set_mole_fractions(z)
%timeit BICU.update(CoolProp.PQ_INPUTS, 101325, 0)

RP = CoolProp.AbstractState('HEOS','R32&R125')
RP.set_mole_fractions(z)
%timeit RP.update(CoolProp.PQ_INPUTS, 101325, 0)

1.09 µs ± 24.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
589 µs ± 14.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Thank You for your attention!Thank You for your attention!

Questions?Questions?

