

Welcome by the Chair & co-Chairs

Opening session of

Delft, October 29-30th, 2020

Original Motivation

"Gathering under the same umbrella researchers working in the realm of fluid-dynamics of flows in non-ideal thermodynamic state

Cross-fertilize among different scientific disciplines and engineering fields where flows of this type are of relevance"

Key Milestones

2016

2018

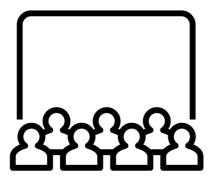
SU2

foundation

ERCOFTAC

European Research Community On Flow, Turbulence And Combustion

SIG 49 2020+





NICFD2020 in Numbers


+ 50 participants

+ 20 high-level presentations

3 keynotes

Thematic workshop

National Institute of Standards and Technology U.S. Department of Commerce

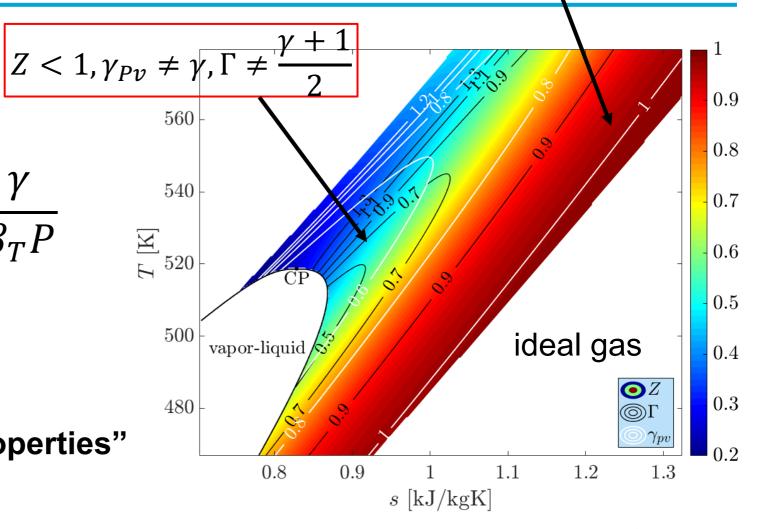
What is NICFD?

"Non-ideal compressible fluid dynamics (NICFD) concerns **non-reacting** and **reactive** flows of fluids in non-ideal thermodynamic state.

It therefore **deals with** dense vapor flows, compressible liquid flows, and multi-phase flows"

$$Pv \neq RT \begin{cases} \Gamma \neq \frac{\gamma + 1}{2} \\ \gamma_{Pv} \neq \gamma \end{cases}$$

A Conceptual Nugget


$$Z \approx 1, \gamma_{Pv} \approx \gamma, \Gamma \approx \frac{\gamma + 1}{2}$$

$$\Gamma \approx \frac{\gamma_{pv} + 1}{2}$$

$$\gamma_{Pv} = -\gamma \frac{v}{P} \frac{\partial P}{\partial v} \bigg|_{T} = \frac{\gamma}{\beta_{T} P}$$

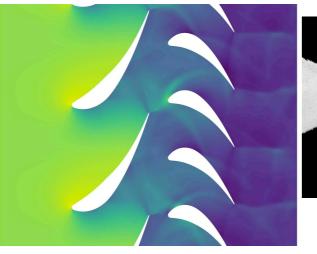
$$\beta_T = \frac{1}{P} + \frac{1}{Z} \frac{\partial Z}{\partial P} \Big|_T$$

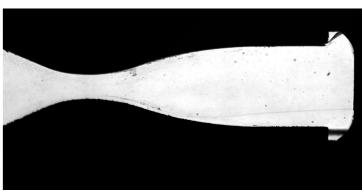
NICFD "characterizing properties" are all intertwined!

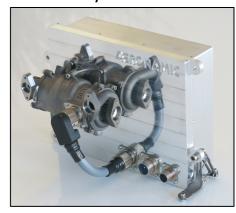
NICFD in Science...

Shock and oblique shock-waves

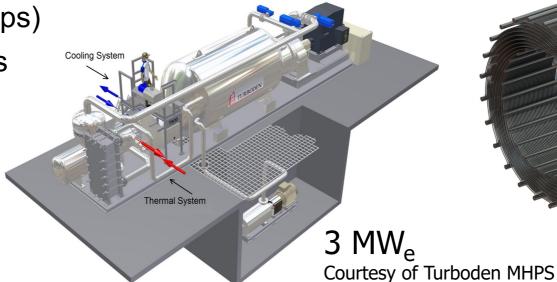
Turbulence and turbulence modeling_


- BL stability & transition
- Heat transfer
- Loss mechanisms
- BZT effects
- Evaporation/condensation
- Acoustics
- •


Theory, models, experiments


...and Relevance in Engineering

- ORC/sCO2 power systems
- Trans-critical heat exchangers
- Oil and Gas compressors/expanders
- Super / transcritical fuel injection
- Cryogenic processes
- Rocket engines (turbopumps)
- Refrigeration / Heat-pumps
- Chemical processes
- ..


Courtesy of Aeronamic

Courtesy of

for Propulsion & Power

Reaction Engines

Acknowledgments

Authors & reviewers

Organizing & scientific committee

Managing team → Trudy, Vanessa, Federica, Francesco

Mank John and Enjoy!

