

Ocean Grazer 3.0 A hybrid, modular and scalable renewable energy capture and storage device

Core team:

A.I. Vakis B. Jayawardhana M. van Rooij F. Bliek

Inventor:

W.A. Prins

Postdoc: Y. Wei

PhD students: M.Z. Almuzakki M. Guo

Past members: J.J. Barradas-Berglind R. Wang

Overview

- > Concepts
- > Project status
- > Research output
- > Open questions
- > Conclusions

28-05-2018 | 3

ering

Concept 1.0 (1/3)

faculty of scie and engineeri

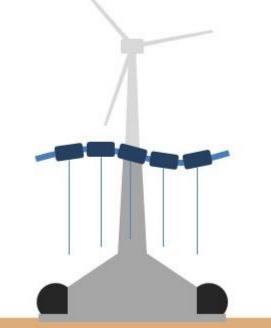
Concept 1.0 (2/3)

- > Integrated Wind, Wave & Storage
 - Increased resource efficiency
 - Shared network infrastructure
- > Lossless Storage & Controllable Output
 - Independent of weather conditions
 - Fully isolated internal working structure
 - Market demand adaptability: energy buffer

Concept 1.0 (3/3)

- Adaptability to Resource Variability
 - Energy absorbtion over full wave spectrum
 - Extraction efficiency maximization via wave prediction and sensing
- Preliminary LCOE calculations suggest non-viability; cost of superstructure alone is prohibitive

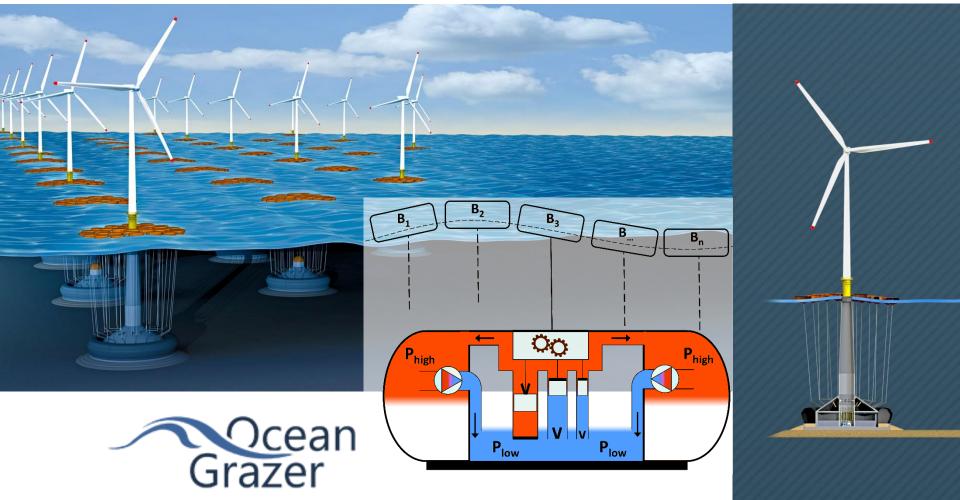
Concept 2.0


- > All features of 1.0 plus:
- > Self-contained fractal modules
 - Easy installation, mooring and maintenance
 - Increased stability with seabed-anchored pods
 - Omnidirectional array design
- > Scalable Solution
 - Deployable across the globe
 - Multi-configuration energy farms

Concept 3.0 (1/2)

- > All features of 2.0 plus:
- > Gravity-based Foundation
 - Short on-site installation time; embedding within existing infrastructure
 - Limited disturbance to ecosystems
 - Reduced footprint via integration of storage modules within pods

LCOE for OG3.0 calculated at 0.10 €/kWh Assumptions: 60% total efficiency; 17 GWh/y power output; 23 M€ investment


28-05-2018 | 8

tio

ering

Concept 3.0 (2/2)

faculty of scient and engineering

Project status (1/4)

- > Research work at U Groningen started in 2013
- Internal funding received for 2 postdoctoral positions and proof-of-concept prototypes
- > Scientific output
 - 2 patents: one covering OG1.0 and OG2.0 since 2014; new patent for OG3.0 filed end of 2017
 - 4 journal papers
 - 9 peer-reviewed conference papers
 - 6 other conference papers (extended abstracts)

Project status (2/4)

- > Supervision
 - 1 postdoc ongoing and 1 finished
 - 2 PhDs ongoing
 - >15 master and >30 bachelor graduates; 6 master and 8 bachelor students ongoing
- > Networking
 - Province of Groningen and >5 industrial partners (Consmema, Demcon, Thales, etc.)
 - More than 20 academic partners from >8 universities
 - Number of dissemination activities in the press

28-05-2018 | 11

Project status (3/4)

> Day of the Engineer (21 March 2018)

Project status (4/4)

- > Ocean Grazer B.V. incorporated May 2018
 - F. Bliek, CEO
 - . M. van Rooij, CTO
 - A.I. Vakis & B. Jayawardhana, advisory board
- Plan: secure funding from investors within next 18 months to design, build and deploy comprehensive and integrated scale prototype of the WEC in a wave tank (within 4 years)
- Long term plan: deploy at sea with wave sensing capabilities (preferably embedded in wind farms)

Research output (1/14)

- > Wind turbine technology (not our focus)
- > Wave Energy Converter (WEC) technology: main focus of past research (discussed next)
- > Preliminary results on:
 - Platform/ superstructure design & mooring
 - Modes of energy transfer to the grid
 - Levelized Cost of Electricity (LCOE) estimates
- > Open questions: survivability; manufacturing; installation & maintenance; embedding in existing infrastructures; policy, etc. (discussed later)

28-05-2018 | 14

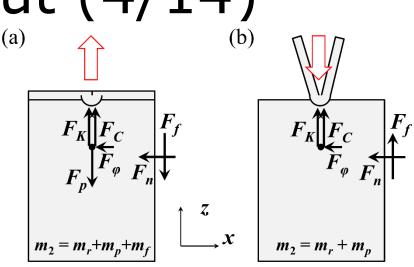
Research output (2/14)

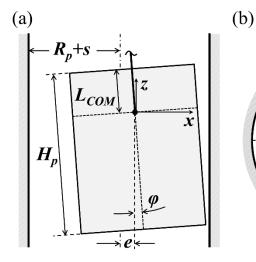
> OG-WEC's Power take-off system modeling:

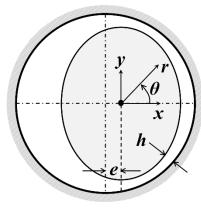
- > Single-piston pump (SPP) with single buoy
 - Hydrodynamics, hydraulics, lubrication, dynamics
 - Nonlinear pumping force prediction (efficiency)
- > Multi-piston pump (MPP) with single buoy
 - Approximation: effective pumped volume changed in discrete steps
- > Multi-pump, multi-piston power take-off (MP2PTO) system with floater blanket

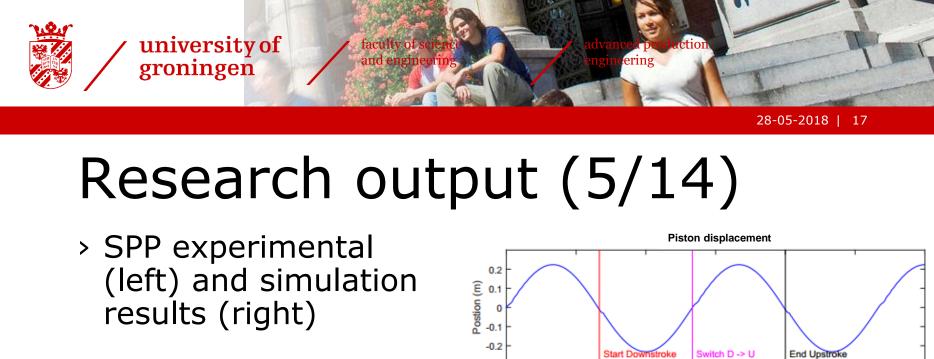
Research output (3/14)

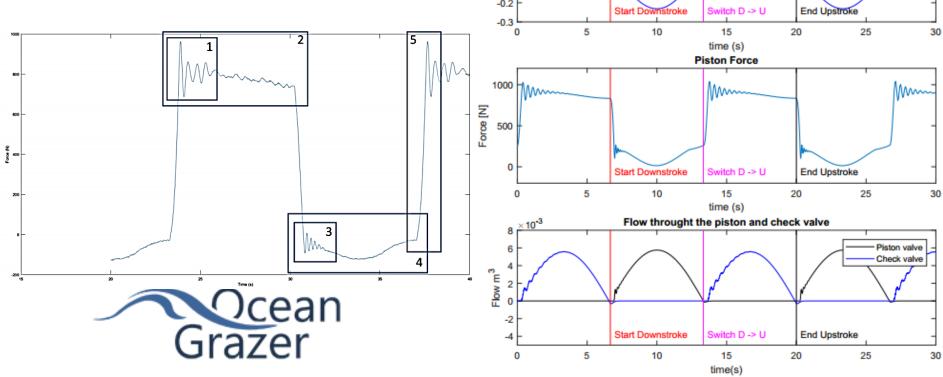
 Single-piston pump (SPP) switching-state dynamic model with experimental validation

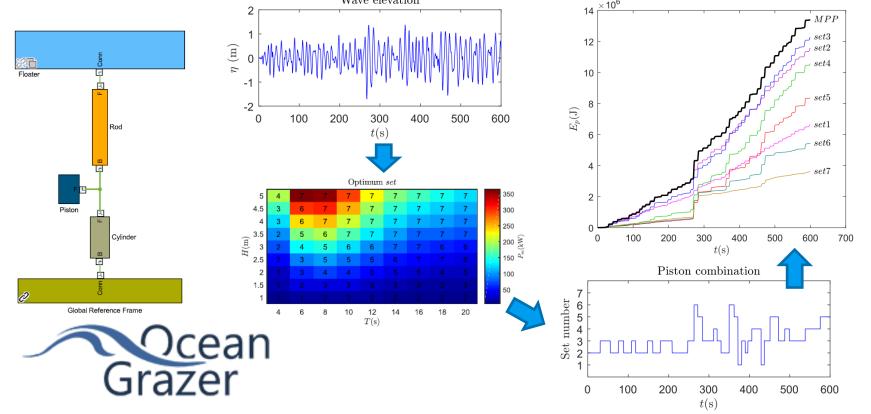




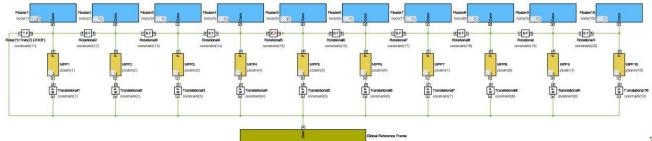

Reasearch output (4/14)

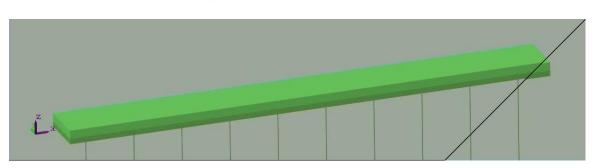

- > Upstroke v. downstroke dynamics: slamming
- > Elastohydrodynamic
 lubrication (EHL) at the
 piston-cylinder interface
 - ISO Class HFC waterbased hydraulic fluid yields best performance

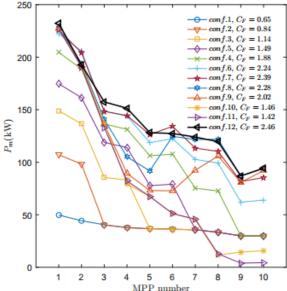




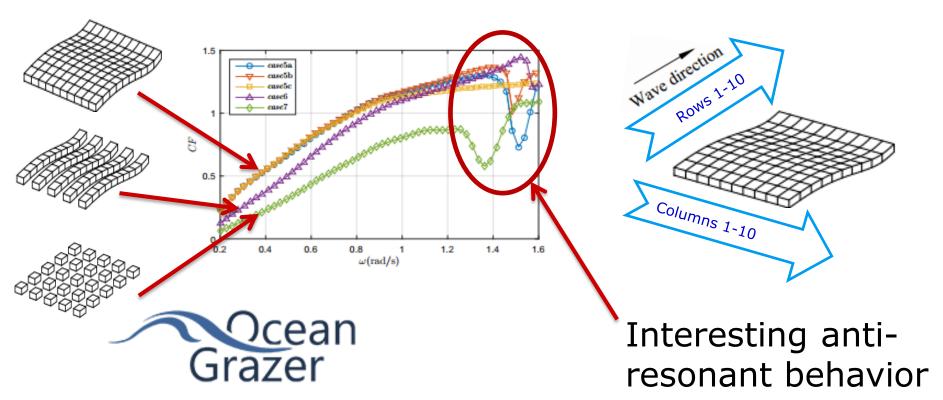
Research output (6/14)

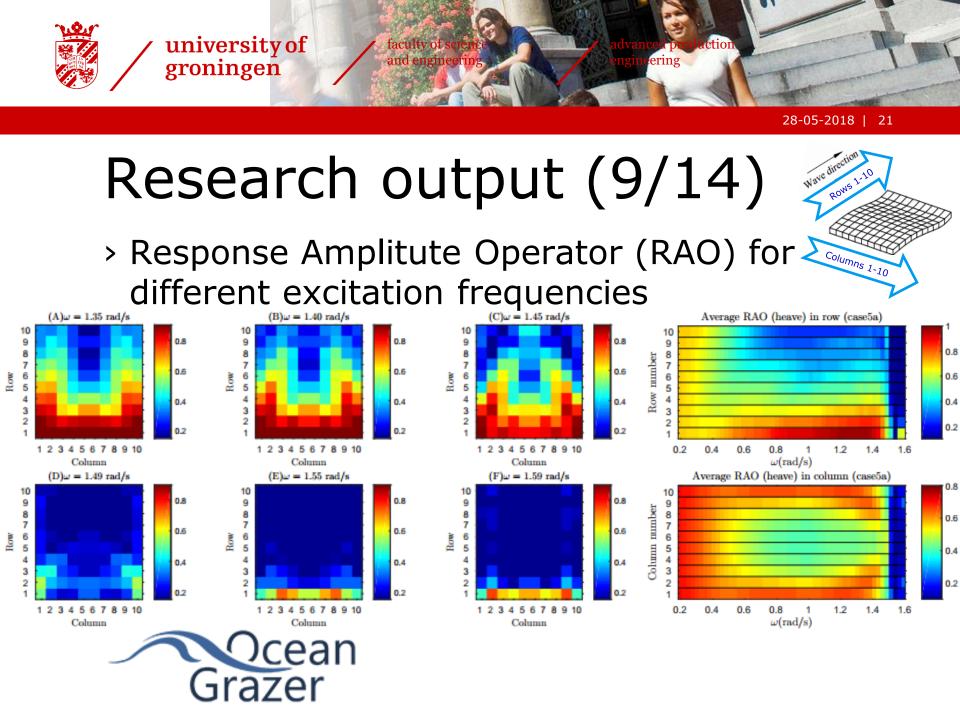

> Multi-piston pump (MPP) model: variable piston area to approximate coupling of multiple pistons




Research output (7/14)

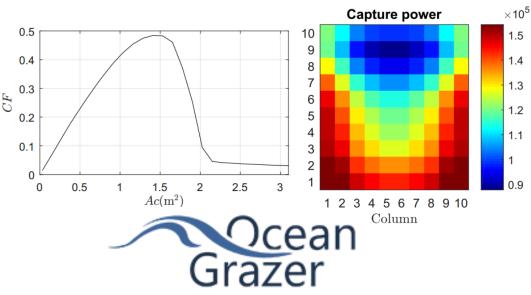
> Floater column with MPPs

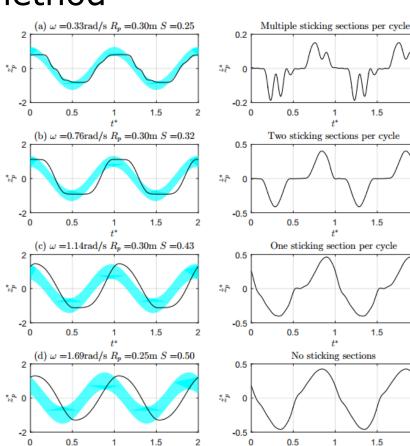




Research output (8/14)

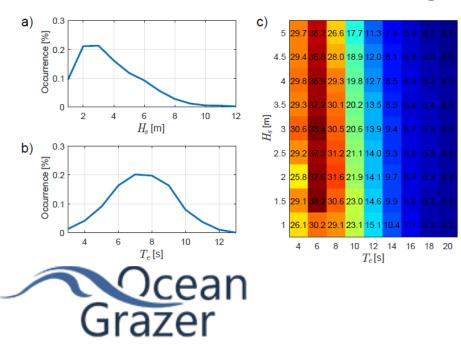
> Frequency domain model of floater blanket with MPPs (capture factor increases past 1.0)

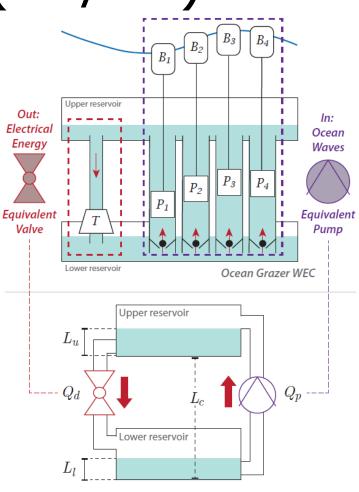




Research output (10/14)

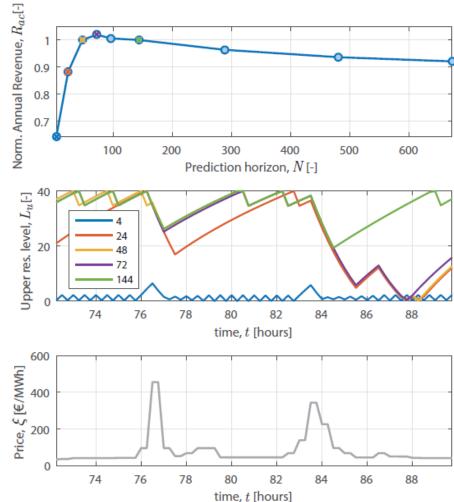
- > Fourier approximation method
- > Instances of sticking
 > "Tuning" of damping
 coefficients is necessary!


ť*


 t^*

Research output (11/14)

 Equivalent net-flow lumped model validated with simulations and used with wave data to demonstrate and compare revenue maximization strategies


Ocean Grazer WEC equivalent net-flow lumped model

Research output (12/14)

- > Normalized annual revenue investigated as function of turbine capacity, prediction horizon (shown right), upper reservoir capacity and differential height between reservoirs (referring to OG1.0)
- Model-predictive control (MPC) most suitable strategy

Research output (13/14)

> Port-Hamiltonian approach Floater Displacements (m) Relative to The Wave Elevation for the Cummins' equation 5s; H = 4m pH-Body1 - WECSim-Body1 pH-Body2 - WECSim-Body2 $f_{ex,2}$ $f_{ex,1}$ Jex,n Ш q_2 $A q_n$ p_{2} p_{μ} 0 5 10 15 20 25 30 $m_{\rm n}$ m_1 m_2 = 10s; H = 4m F_1^r F_n^r F_2' k_1 -2 0 5 10 15 25 30 20 Energy of The Radiation Components $k_{\text{pto},1}$ $k_{\rm pto,2}$ $k_{\text{pto},n}$ ×10⁴ $b_{\text{pto},n}$ 4 Kinetic Energy E^r (J) Jex 0 $m\ddot{q}+f_b+f_{pto}=f_{ex}+f_r$ 5 10 15 20 25 30 f_r time (s) T=10s × 10⁸ T=5s ×10⁵ 6 Storage Energy 3 y_r u_r Ť 10 0 20 30 0 10 20 30 3 <u>×1</u>0⁵ ×10⁸ 6 cean Total Energy H₂ (J)

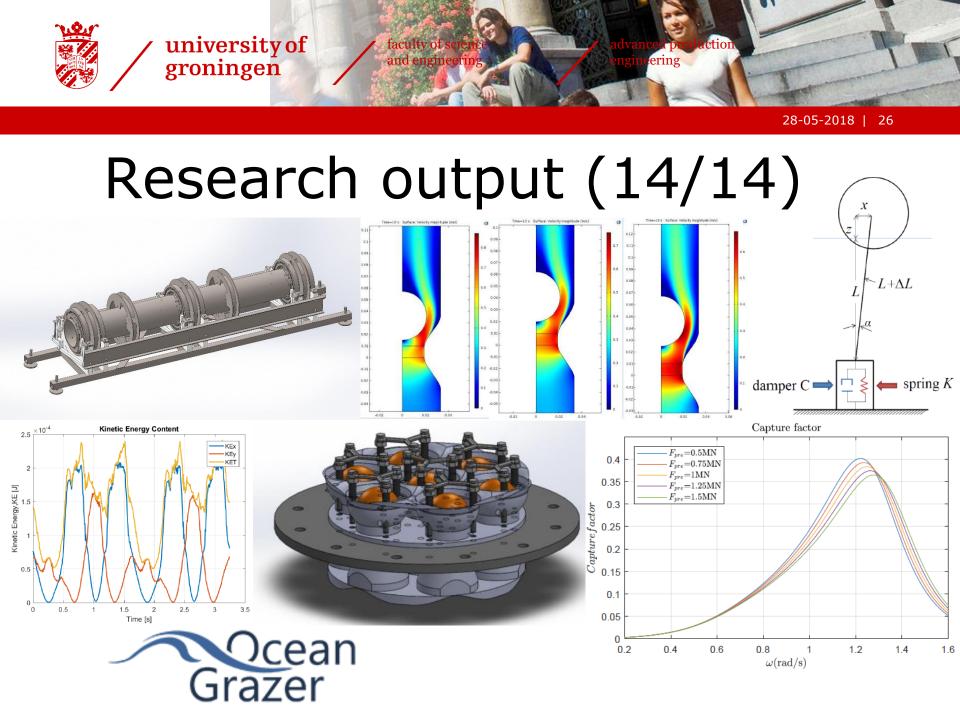
> 2 L 0

10

time (s)

20

30


0

10

time (s)

20

30

faculty of scie and engineeri

advanced productio

28-05-2018 | 27

Open questions (1/2)

- 1. Optimal floater blanket design that can ensure economic viability
- 2. Optimal reservoir size that can ensure economic viability
- 3. Model-based predictive control (MPC) for piston coupling mechanism
- Control strategy for a multi-turbine system
- 5. Energy extraction predictions for the MP2PTO system
- 6. Wave propagation prediction models
- 7. Transient check valve dynamics
- 8. Check valve and piston valve optimization
- 9. Platform hydrodynamics (flow through and around the structure)
- 10. Design and experimental validation of the sealing system
- 11. Elastohydrodynamic lubrication models for the pistons and seals
- 12. Material and coating selection for improved tribological performance
- 13. Investigation of potential working fluids and their conditioning
- 14. Predictive models of the MP2PTO hydraulic system
- 15. CFD on wave-floater hydrodynamics and hydraulic system behavior
- 16. Experimental measurements on single floater hydrodynamics
- 17. Experimental measurements on the floater blanket
- Wave radar data reconstruction
- 19. Distributed control algorithms for MP2PTO system adaptation
- 20. Experimental measurements of a multi-piston pump
- 21. Flexible reservoir system design and validation
- 22. Flexible reservoir system specification analysis (including wear and fatigue)
- 23. Turbine system specification analysis (including wear and fatigue)
- 24. Cable connection design and analysis (including wear and fatigue)
- 25. Floater design and analysis (including wear and fatigue)
- 26. Sealing system design and analysis (including wear and fatigue)
- 27. Check valve design and analysis (including wear and fatigue)
- 28. Preventive maintenance strategies
- 29. Maintenance and replacement in case of failure
- 30. Design and analysis of piston control mechanism
- 31. Influence of additional PTOs on OG platform design
- 32. Design and analysis of the concrete structure
- 33. Gravity-based foundation stability, scouring, etc.
- 34. Wear and fatigue analysis of the concrete structure
- 35. Positioning of platform to desired location / assembly techniques for construction at sea
- 36. Electrical energy generation, power electronics and transmission
- 37. Hydrogen generation and storage
- 38. Big data management for OG project (and platform) development
- 39. Dealing with big data in the control of the MP2PTO system

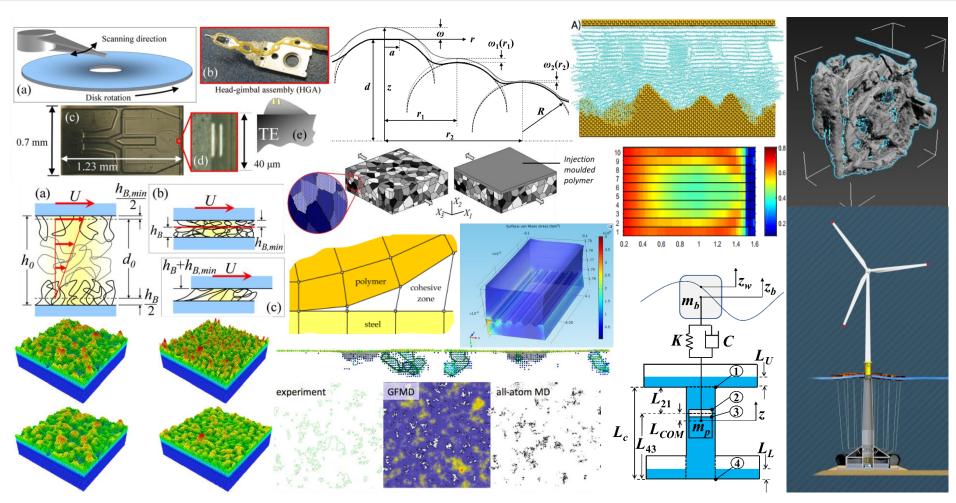
40.	Big data in the modelling and simulations of the OG
41.	Wave data reduction
42.	Dynamical model reduction
43.	Hydrodynamic model reduction
44.	Tribological (lubrication) model reduction
45.	Environmentally sustainable end-of-life OG platform demolition and/or reusability
46.	Environmental impacts of OG deployment
47.	Carbon footprint of OG construction activities
48.	Damage and lifetime estimation of platform structure
49.	Optimal OG farm design and deployment/ embedding
50.	Preventive and coping strategies for biofouling of sealing system
51.	Cost estimation of development of OG
52.	Impact of OG deployment sites on marine traffic routes
53.	Deployment sites review (study of potential locations)
54.	Prototype deployment sites review (study of potential locations for prototype)
55.	Off-grid energy transportation alternatives
56.	Current EU policies: are they sufficient for OG deployment?
57.	Global policies on renewable energy: how will they affect the realization of the OG?
58.	Fair competition with fossil fuel producers
59.	Legal framework(s) necessary for connection to existing energy grids
60.	Patent management and future patenting issues

61.

Open questions (2/2)

- 1. Optimal floater blanket design that can ensure economic viability
- 2. Optimal reservoir size that can ensure economic viability
- 3. Energy extraction predictions for the MP2PTO system
- 4. Flexible reservoir system design and validation
- 5. Flexible reservoir system specification analysis (including wear and fatigue)
- 6. Gravity-based foundation stability, scouring, etc.
- 7. Environmental impacts of OG deployment
- 8. Optimal OG farm design and deployment/ embedding
- 9. Cost estimation of development of OG

Conclusions


- > We invite academic partners to help investigate fundamental and technological aspects
- > Business (and device) development to proceed in parallel with research
- Criticisms, suggestions and recommendations are very welcome (and extremely useful)
- > Thank you

28-05-2018 | 30

Mechanics and Tribology of Engineering Systems (MeTrES)

