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What I do and what I don’t do

Simulation of Energy

Projects that develop new
mathematics

application in power and gas

Modeling, Simulation and
Optimization

no software, no lab
experiments, no financial
markets expert

however regulatory settings
should be considered in the
modeling
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Overview

1. Global Point of View

2. Power flow equation

3. Optimization problem

4. Numerical simulations
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Optimization and Optimal Control

Global Optimal Solution needs an objective function f (x)

Monetary cost

Environmental impact

Societal impact

What is x and what are the constraints on x?
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Optimal Battery Control in the Hierarchical Power Grid
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stability
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Microgrid Level

+   -

+   -

+   -

load `generation g SoC x

CE

time discrete system

battery control (charging and
discharging)

only active power demand is
considered

peak shaving could be one
optimization goal

time horizon is important
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Surrogate Model

33-bus distribution grid
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Figure: The 33-bus distribution grid used as test instance (left), the identified load node
clusters (middle), and the surrogate model (right) obtained with the identified clustering.

Two purposes: faster computation and secure communication
1Mlinarić, P., Ishizaki, T., Chakrabortty, A., Grundel, S., Benner, P., Imura, J. I. (2018,

June). Synchronization and aggregation of nonlinear power systems with consideration of bus
network structures. In 2018 European Control Conference (ECC) (pp. 2266-2271). IEEE.

© S. Grundel MOR in Energy Networks 9/28



Battery control

Batteriesteuerung (laden/entladen)

”peak shaving” als Optimierungsziel

MPC - Zeithorizont!

Figure: Impact of mapping error (top) and
approximation via RBF and NN (bottom) on the
closed-loop performance within 48 consecutive time
steps.

MG1 MG2

MG3 MG4

cost runtime[ms]
no contr 12,2 —
ADMM 4,4 2.5
RBFs 4,5 1.2
NNs 5,6 0.05

Table: Comparison of the summed
MPC closed-loop performance cost
and runtime (per call): ADMM vs.
RBFs vs. NNs.

2M Baumann, S Grundel, P Sauerteig, K Worthmann Surrogate models in bidirectional
optimization of coupled microgrids at-Automatisierungstechnik 67 (12), 1035-1046, 2019
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Overview

1. Global Point of View

2. Power flow equation

3. Optimization problem

4. Numerical simulations
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Network Structure

Tree as graph G = (V, E) with nodes V and edges E ⊆ V × V

nodes are referred to as buses, edges represent transmission lines

low-voltage subnet is rooted at a transformer station (the slack 0)

Figure: Tree-structured graph with slack node 0 (red square) and 92 (following) nodes.
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Quantities of Interest

Each bus i ∈ V,

incorporates an active power demand Pi in kW,

a reactive power demand Qi in kvar,

and a complex voltage Vi = |Vi |ejδi , where |Vi | and δi denote the voltage
magnitude and angle, respectively.

Typically,

the voltage V0 = |V0| ejδ0 at the slack node is given.

For i > 0, we assume that the active power demand is known in advance.

Given the power factor tan(ϕi ) the reactive power demand is determined by

Qi = Pi · tan(ϕi ), (1)

with ϕi from the complex power Si = Pi + jQi = |Si | ejϕi .
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Admittance Matrix and Power Flow

[
Pi − |Vi |

∑n
j=1 |Vj |(Gij cos(δij) + Bij sin(δij))

Qi − |Vi |
∑n

j=1 |Vj |(Gij sin(δij)− Bij cos(δij))

]
= 0 ∀ i ∈ V, (2)

Admittance Matrix

(complex) admittance yij ∈ C along the transmission line (i , j) ∈ E is encoded via
the bus admittance matrix Y ∈ Rn×n given by

Yij =

{
yi +

∑
k∈V\{i} yik , if i = j

−yij , else.

the so-called shunt admittance, yi is omitted.

Y = G + jB with matrices G = (Gij),B = (Bij) ∈ Rn×n, which are
parameters of the system.

(2) consists of 2n equations with 4n variables namely (|Vi |, δi ,Pi ,Qi )
> ∈ R4

δij = δi − δj denotes the angle difference for i , j ∈ V.
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Overview

1. Global Point of View

2. Power flow equation

3. Optimization problem

4. Numerical simulations
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The objective function

Line Loss

The transportation of energy comes along with losses depending on the length
and material of the line and the amount of the current flow.

PL(I ) = 3 ·
n−1∑
l=1

R ′l `l |Il |2 . (3)

R ′l and `l denote the specific resistance in Ω/km and the length in m

|Il | represents the magnitude of the complex current along the line

The factor 3 reflects the fact that the lines consist of three phases.

I =
1√
3

max{
∣∣Y f · V

∣∣ , ∣∣Y t · V
∣∣},

| · | and max are to be understood component-wise
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Constraints

active power demand Pi is given.

Qi = Pi tan(ϕi ) and cos(ϕi ) = µi

µ
i
≤ µi ≤ µi

Note that the power factors can only be set indirectly by manipulating
inverters.

voltages have to stay within some corridors, w

V i ≤ |Vi | ≤ V i

Having the interface to the upper grid level in mind, we assume some bounds
on Q0 to be given by the DSO, i.e.

Q
0
≤ Q0 ≤ Q0
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Optimization Problem

min
µi∈[µ

i
,µi ]

PL(I ) = 3 ·
n−1∑
l=1

R ′l `l |Il |2 (4a)

subject to ∀ i ∈ V :[
Pi − |Vi |

∑n
j=1 |Vj |(Gij cos(δij) + Bij sin(δij))

Pi · tan(ϕi )− |Vi |
∑n

j=1 |Vj |(Gij sin(δij)− Bij cos(δij))

]
= 0 (4b)

I =
1√
3

max{
∣∣Y f · V

∣∣ , ∣∣Y t · V
∣∣} (4c)

V i ≤ |Vi | ≤ V i ∀ i > 0 (4d)

µi = cosϕi ∀ i ∈ V (4e)

|V0| = 1, δ0 = 0 (4f)

Q
0
≤ P0 tan(ϕ0) ≤ Q0 (4g)

Due to constraint (4b) the problem becomes non-convex.
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Overview

1. Global Point of View

2. Power flow equation

3. Optimization problem

4. Numerical simulations
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Details on implementation

R ′l , `l and the grid topology were provided by our industrial partner.
Pi from Gaussian distribution with E(P) = 2.5 kW, σ(P) = 0.5 kW.

µ
i

0.9 V i 0.9 [p.u.] Q
0

−∞
µi 1 V i 1.1 [p.u.] Q0 −100 [kvar]

Table: Parameters used in the implementation.

We use the MATLAB package matpower to solve the PFEand MATLABs fmincon to
solve the optimization. The fmincon setting is displayed in Table below.
For the computation of Y , Y f and Y t we use the open-source software
PandaPower.

option setting
Algorithm interior-point

MaxFunctionEvaluations 1e5

StepTolerance 1e-16

Table: fmincon setting.
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Scenarios

We distinguish three scenarios with respect to controllability of the power factors:
1. cos(ϕi ) = 0.9 for all i > 0 (no optimization)
2. cos(ϕi ) = µ∗ for all i > 0 (1-dimensional optimization)
3. cos(ϕi ) = µ∗i for all i > 0 (n-dimensional optimization).

The corresponding objective function value is denoted by Pref
L , P1D

L , and PnD
L ,

respectively.

Figure: Impact of the choice of µ on PL (left) and Q0 (middle) for the 1-dimensional
unconstraint optimization problem and comparison of reactive power Qref

i of the
reference scenario and Q?

i of the solution of the n-dimensional problem.

© S. Grundel MOR in Energy Networks 21/28



Change in active Power at a single node

Figure: Impact of changing the active power at one node i to Pi = 5 kW.

To this end, we set Pi = 5 kW, i ∈ {6, 12, 60, 61}, see Figure 3 for the location of
these nodes in the grid (green triangles). We make the following observations.
(Slightly) Changing the active power at a single node changes the reactive power
accordingly while the voltage and the optimal power factor do not change
drastically. The corresponding (optimal) objective function values are listed in
Table 4.
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Impact of manipulation

setting Pref
L P1D

L PnD
L

no manipulation 1.72 1.65 1.62
P6 = 5 1.75 1.67 1.64
P12 = 5 1.76 1.68 1.65
P60 = 5 1.72 1.64 1.61
P61 = 5 1.74 1.66 1.63
P63 = 5 1.73 1.66 1.63
P63 = 10 1.76 1.68 1.64
P63 = 20 1.87 1.75 1.71
P63 = 50 2.16 1.96 1.93
std = 1 1.74 1.67 1.64
std = 2 1.79 1.71 1.68
std = 4 1.82 1.73 1.69
std = 8 1.88 1.78 1.73

Table: Impact of manipulating the active power at a single bus or increasing the variance
of the active power within the whole grid on the objective function value. All values are
given in kW.
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Strong disturbance at bus 63

Figure: Impact of changing the active power Pi at one node i (major disturbance).
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Line Losses

(a) Reference scenario without disturbance.

(b) Reference scenario with P63 = 50.

(c) Optimal solution for P63 = 50.

Figure: Reference scenario, i.e. Pi ∼ N (2.5, 0.5), (top), reference scenario, i.e. µi = 0.9,
i > 0, with strong manipulation P63 = 50 kW (middle), and solution of n-dimensional
scenario with P63 = 50 kW (bottom).

© S. Grundel MOR in Energy Networks 25/28



Line Losses

Figure: Difference between line losses before and after (n-dimensional) optimization with
P63 = 50 kW.
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Changes with increased variance

Figure: Impact of increasing the variation of the Pi .
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Summary

Modeling is a crucial part of solving the problem

Different optimization problems everywhere

Models are complex and need to be communicated ⇒ Surrogate Models aka
reduced models

There are hidden controls that can be used.

Thank you for your attention!

1. P. Sauerteig, M. Baumann, J. Dickert, S. Grundel, K. Worthmann Reducing
transmission losses via reactive power control to appear
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