Learning to Run a Power Network Delft 2023

27 September 2023

L2RPN Delft 2023

Organized by Delft-AI-Energy Lab

PowerWeb L2RPN Session September 27, 14:00-15:15 CET, Delft X, Theater Hall

Talk	Speakers
Introduction and history of L2RPN	Jochen Cremer (TU Delft)
From L2PRN to the real grid – challenges we face as a TSO	Christian Merz (Elia Group)
Practical Challenges in AI Development for Real-World Congestion Management at TenneT	Davide Barbieri (TenneT)
Overview of winners of L2RPN 2023	Ali Rajaei (TU Delft)
Winner's pitch and Industrial panel discussion (RTE, Elia, and TenneT) (zoom link)	Jochen Cremer (TU Delft)
 3rd team HybridAgent pitch (<u>video link</u>) Q&A with panel 	Anandsingh Chauhan (TCS)
 2nd team ACT SMART pitch (<u>video link</u>) Q&A with panel 	Pusen Dong (Beihang Uni)
 1st team BYZ-UCSC pitch (<u>video link</u>) Q&A with panel 	Shourya Bose (UC Santa Cruz)

ENER ERGY **ŤU**Delft

Organizer team

Ali Rajaei PhD student TU Delft

Geert Jan Meppelink MSc student TU Delft

Jochen Cremer Assistant Professor TU Delft

Benjamin Donnot Data Scientist RTE

Energy Transition

Energy Transition

2050 > 50% solar + wind

2020 ~ 10% solar+wind

To meet the net-zero carbon emission target and tackle Climate change

Operational Complexity

Artificial Intelligence (AI)

2013

Develop an AI-based Assistant for human operators

<<

Line Overload to redispatch urgently

A Hide Timeline

Learning to Run a Power Network (L2RPN) Competition

Test the potential of AI to robustly operate a power grid in real-time given operational constraints.

Learning to Run a Power Network (L2RPN) Competition

Real-World challenges

L2RPN Delft

2023

Organized by Delft-AI-Energy Lab

Rie

L2RPN competition series

Feasibility challenges NeuriPS 2020 **ICAPS 2021** For AI Startup **IJCNN 2019** WCCI 2020 Robustness2023.... Trust Medium Grid, adverserial attacks, Ability to send timely alert Topology & redispatching actions in risk of failure Small Grid. WCCI 2022 30% REN 10% REN no events. Medium Grid, maintenance, Winter month, all year long, only topology only topology PARIS REGION Adaptability and photoset 40% REN remake Large Grid, Multi Energy Mixes, High renewable penetration, Topology & redispatching actions battery storage

Thank you for your attention!

PowerWeb L2RPN Session September 27, 14:00-15:15 CET, Delft X, Theater Hall

Talk	Speakers
Introduction and history of L2RPN	Jochen Cremer (TU Delft)
From L2PRN to the real grid – challenges we face as a TSO	Christian Merz (Elia Group)
Practical Challenges in AI Development for Real-World Congestion Management at TenneT	Davide Barbieri (TenneT)
Overview of winners of L2RPN 2023	Ali Rajaei (TU Delft)
Winner's pitch and Industrial panel discussion (RTE, Elia, and TenneT) (zoom link)	Jochen Cremer (TU Delft)
 3rd team HybridAgent pitch (<u>video link</u>) Q&A with panel 	Anandsingh Chauhan (TCS)
 2nd team ACT SMART pitch (<u>video link</u>) Q&A with panel 	Pusen Dong (Beihang Uni)
 1st team BYZ-UCSC pitch (<u>video link</u>) Q&A with panel 	Shourya Bose (UC Santa Cruz)

ENER ERGY **ŤU**Delft

Learning to Run a Power Network Delft 2023

27 September 2023

L2RPN Delft 2023

Organized by Delft-AI-Energy Lab

PowerWeb L2RPN Session September 27, 14:00-15:15 CET, Delft X, Theater Hall

Talk	Speakers
Introduction and history of L2RPN	Jochen Cremer (TU Delft)
From L2PRN to the real grid – challenges we face as a TSO	Christian Merz (Elia Group)
Practical Challenges in AI Development for Real-World Congestion Management at TenneT	Davide Barbieri (TenneT)
Overview of winners of L2RPN 2023	Ali Rajaei (TU Delft)
Winner's pitch and Industrial panel discussion (RTE, Elia, and TenneT) (zoom link)	Jochen Cremer (TU Delft)
 3rd team HybridAgent pitch (<u>video link</u>) Q&A with panel 	Anandsingh Chauhan (TCS)
 2nd team ACT SMART pitch (<u>video link</u>) Q&A with panel 	Pusen Dong (Beihang Uni)
 1st team BYZ-UCSC pitch (<u>video link</u>) Q&A with panel 	Shourya Bose (UC Santa Cruz)

ENER ERGY **ŤU**Delft

L2RPN Delft 2023 Environment

- IEEE 118-bus system.
- Observation space: more than 4,000
- Action space: more than 70,000

"l2rpn_wcci_2022" environment

Modeling of real-time operation decision making

State: flows, generations, demands, grid topology, etc
Action: re-dispatch or topology change
Reward/cost function: number of overflowed lines, cost,
... Participant design choice

Score: scaled to 100.

Time resolution considered: 5 minutes (human operators work with snapshots every 5 minutes)

L2RPN Delft 2023

- 90 registrations from around the world.
- 12 teams.
- 410 submissions.

codalab.lisn.upsaclay.fr/competitions/12420

Winner teams!

- 1st place: €1500
 - 2nd place: €1000
 - 3rd place: €500

3rd Team: Hybrid Agent

- Members:
 - Anandsingh Chauhan
 - Dr. Mayank Baranwal
- Score: 42.44

2nd Team: ACT SMART

- Members:
 - Pusen Dong
 - Tianchen Zhu
 - Chang Liu
 - Yue Qiu
 - Haoyi Zhou
 - Yingying Zhao
- Score: 54.44 and 52.01

1st Team: BYZ-UCSC

- Members:
 - Shourya Bose
 - Qiuling Yang
 - Yu Zhang
- Score: 58.98

Zoom meeting

Thank you for your attention!

PowerWeb L2RPN Session September 27, 14:00-15:15 CET, Delft X, Theater Hall

Talk	Speakers
Introduction and history of L2RPN	Jochen Cremer (TU Delft)
From L2PRN to the real grid – challenges we face as a TSO	Christian Merz (Elia Group)
Practical Challenges in AI Development for Real-World Congestion Management at TenneT	Davide Barbieri (TenneT)
Overview of winners of L2RPN 2023	Ali Rajaei (TU Delft)
Winner's pitch and Industrial panel discussion (RTE, Elia, and TenneT) (zoom link)	Jochen Cremer (TU Delft)
 3rd team HybridAgent pitch (<u>video link</u>) Q&A with panel 	Anandsingh Chauhan (TCS)
 2nd team ACT SMART pitch (<u>video link</u>) Q&A with panel 	Pusen Dong (Beihang Uni)
 1st team BYZ-UCSC pitch (<u>video link</u>) Q&A with panel 	Shourya Bose (UC Santa Cruz)

ENER ERGY **ŤU**Delft

uuuuugu Sinn

From L2RPN to the real grid

Challenges we face as a TSO

27.09.2023 | Christian Merz

Agenda

- 1. Why do we need to optimize for grid topology?
- 2. Our approach
- 3. The challenges
- 4. Next steps

3

Elia Group: one of Europe's top 5 TSOs

- Elia Group is active in electricity transmission. It encompasses two leading TSOs strategically located in two European regions:
 - Elia in Belgium
 - 50Hertz in Germany

International consulting services

Connect to energy data and digital products via **APIs**

Accelerate development of offshore energy

1. Why do we need to optimize for grid topology?

Why do we need to optimize for grid topology ?

Increasing redispatch costs

Volume and Cost for Congestion Management in Germany

In 2022 redispatch costs nearly doubled to 4,2 billion €.

Increasing grid complexity

2. Our Approach

There is a strong need to find topological grid actions to resolve congestion in the grid and to lower redispatch costs

Can we optimize for topological actions in the grid?

1. Proof of Concept "Advanced Analytics for **Topology Optimization"** 2020-2022

2. Proof of Concept RL & optimized load flow solver approach (Q2 2023)

Together with ▷InstaDeep™

Our goal is to work on the challenges that have been discovered during the first proof of concept phase.

RL Demonstration of a test grid

Requirements to implement RL for Congestion Management to Elia's grid + first steps

ſ	\equiv
I	

Analysis of potential use-cases for RL in Elia Group

From a topology optimizer different departments would benefit. In addition,

Elia Group

European level / TSO / academia

3. The challenges

From L2RPN to the real grid – three main challenges need to be tackled

1. Show the potential of RL to the business

2. Get the real grid into the environment

3. Speed up load flow calculations

Grid2op / L2RPN – great starting point to demonstrate RL to the business but currently difficult to adapt to the Elia Group grids.

Data articfacts and inconsistent data make it difficult to set-up a RL environment

- Load and generation data with sufficient critical situations
- A consistent number of elements between the timesteps
- Requirements
- Loaded into Pandapower
- Elia Group tools: Integral (50 Hertz), PowerFactory (Elia), Pandapower
- The benm_gridmodel_importer used to do the conversion to pandapower

CGMES Files

Test files

- Grid operation (DACF (50Hertz & Elia) (PowerFactory & AMICA exports)
- Data sources

Fair

Pandapower

VoltControl project files (Belgium)

Integral .dat files

Grid Planning (50Hertz) Integral exports

<u>S</u>

challenges

- Inconsistent numbers of elements
- AC load flow would not converge
- Converter would introduce artifacts
- Discovering new bugs in the converter
- Some elements not modelled in Pandapower

Speed up the load flow calculations to handle the big grid and enable various solving methodologies.

4. Next steps

Next steps

Summary

- 1. Why do we need to optimize for grid topology?
- 2. Our approach
- 3. The challenges
- 4. Next steps

Let's get in touch and exchange !

Community of Practice

Christian Merz Data Scientist Christian.merz@eliagrou.eu

Practical Challenges in AI Development for Real-World Congestion Management at TenneT

PowerWeb L2RPN Session Davide Barbieri (TenneT)

• Established in Summer 2020

- Established in Summer 2020
- Why?
 - Develop new (smart) functionalities to mitigate future risk
 - Congestion management given high priority

#	System Issue
	Increase in Transmission System Congestion in Known
1	Areas
	Increase in Transmission System Congestion in
2	Unpredictable or Unknown Areas
3	Increased ROCOF & Reduced Nadirs
4	Faster Ramping
5	Increased Frequency Volatility
6	Larger Propagation of Low Voltages During Disturbances
7	Larger Voltage Dips
8	Inadequate Observability of RES
9	Lack of Operator Situational Awareness for New Issues
10	Reduction of Transient Stability Margins
11	Decreased Damping of Existing Power Oscillations
12	Inaccurate Load Model Data/Information
13	Harmonic Instability
14	Reduced Dynamic Reactive Power Reserves
15	Resonances Due to Power Electronics
16	Inadequate Controllability of RES
17	Reactive Power Fluctuations
18	Cyber Attack on Entities Connected to the Grid
19	Misoperation of Protection Relays
	LCC Commutation Failure due to Reducing System
20	Strength

- Established in Summer 2020
- Why?
 - Develop new (smart) functionalities to mitigate future risk
 - Congestion management given high priority
- Main tracks
 - Congestion management project (GridOptions tool)
 - Forecasting project
 - Dynamic line rating
 - Etc...

- Established in Summer 2020
- Why?
 - Develop new (smart) functionalities to mitigate future risk
 - **Congestion management** given high priority
- Main tracks
 - Congestion management project (GridOptions tool)
 - Forecasting project
 - Dynamic line rating
 - Etc...
- Goal
 - Embed available **SOTA** tools and technologies **within TenneT**

- Established in Summer 2020
- Why?
 - Develop new (smart) functionalities to mitigate future risk
 - **Congestion management** given high priority
- Main tracks
 - Congestion management project (GridOptions tool)
 - Forecasting project
 - Dynamic line rating
 - Etc...
- Goal
 - Embed available **SOTA** tools and technologies **within TenneT**
 - Develop/maintain some (smart) functionalities in-house

- Established in Summer 2020
- Why?
 - Develop new (smart) functionalities to mitigate future risk
 - **Congestion management** given high priority
- Main tracks
 - Congestion management project (GridOptions tool)
 - Forecasting project
 - Dynamic line rating
 - Etc...
- Goal
 - Embed available SOTA tools and technologies within TenneT
 - Develop/maintain some (smart) functionalities in-house
 - Build **R&D environment** to tailor solutions to TenneT's needs

- TenneT uses loadflow simulations to
 - Asses congestion related risks
 - Determine possible remedial actions

- TenneT uses loadflow simulations to
 - Asses congestion related risks
 - Determine possible remedial actions

Redispatch

- Baseline optimization tooling available
- Costly

- TenneT uses loadflow simulations to
 - Asses congestion related risks
 - Determine possible remedial actions

Redispatch

- Baseline optimization tooling available
- Costly

Topological actions

- Solutions are thought of and evaluated by humans
- Currently not fully exploited
- Support tooling only for running simulations

- TenneT uses loadflow simulations to
 - Asses congestion related risks
 - Determine possible remedial actions
- Several stages for each given day
 - Currently GridOptions is focusing on start of ID

- TenneT uses loadflow simulations to
 - Asses congestion related risks
 - Determine possible remedial actions
- Several stages for each given day
 - Currently GridOptions is focusing on start of ID

- TenneT uses loadflow simulations to
 - Asses congestion related risks
 - Determine possible remedial actions
- Several stages for each given day
 - Currently GridOptions is focusing on start of ID
 - Goal is to move expand in other time-frames

• Developing on sub-net (Groningen-Drenthe)

Viebahn J. et al, GridOptions Tool: Real-World Day-Ahead Congestion Management using Topological Remedial Actions, 2024

- Developing on sub-net (Groningen-Drenthe)
 - Challenging region due to shortages
 - Increasing requested connections
 - More generation of renewable energy resources
 - Dynamic flow patterns

- Developing on sub-net (Groningen-Drenthe)
 - Challenging region due to shortages
 - Increasing requested connections
 - More generation of renewable energy resources
 - Dynamic flow patterns

- Developing on sub-net (Groningen-Drenthe)
 - Challenging region due to shortages
 - Increasing requested connections
 - More generation of renewable energy resources
 - Dynamic flow patterns
- Meant to aid not automate
 - Need trust
 - Need to be understandable
 - Contrast between users and business case

Viebahn J. et al, GridOptions Tool: Real-World Day-Ahead Congestion Management using Topological Remedial Actions, 2024

- Fully **rolled-out** solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution

- Fully **rolled-out** solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution
- Dynamic environment
 - Grid model constantly changing

- Fully rolled-out solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution
- Dynamic environment
 - Grid model constantly changing
- Multi-Objective
 - Safety of the network is important
 - **Reduce** the number of **topological changes**
 - Ideally switch only bus-bar couplers (remote)

- Fully rolled-out solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution
- Dynamic environment
 - Grid model constantly changing
- Multi-Objective
 - Safety of the network is important
 - **Reduce** the number of **topological changes**
 - Ideally switch only bus-bar couplers (remote)
 - Solutions must be **trusted/understood** by operators
 - Set of solutions
 - Allowing operators to have options

- Fully rolled-out solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution
- Dynamic environment
 - Grid model constantly changing
- Multi-Objective
 - Safety of the network is important
 - **Reduce** the number of **topological changes**
 - Ideally switch only bus-bar couplers (remote)
 - Solutions must be **trusted/understood** by operators
 - Set of solutions
 - Allowing operators to have options

- Fully rolled-out solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution
- Dynamic environment
 - Grid model constantly changing
- Multi-Objective
 - Safety of the network is important
 - **Reduce** the number of **topological changes**
 - Ideally switch only bus-bar couplers (remote)
 - Solutions must be **trusted/understood** by operators
 - Set of solutions
 - Allowing operators to have options

Max loading

- Fully rolled-out solutions for entire day
 - Provide topology for **each time-step** of the day
 - (Currently) lower time resolution
- Dynamic environment
 - Grid model constantly changing
- Multi-Objective
 - Safety of the network is important
 - **Reduce** the number of **topological changes**
 - Ideally switch only bus-bar couplers (remote)
 - Solutions must be **trusted/understood** by operators
 - Set of solutions
 - Allowing operators to have options

Max loading

Max loading

Viebahn J. et al, GridOptions Tool: Real-World Day-Ahead Congestion Management using Topological Remedial Actions, 2024

Where do we want to go?

Dot in the Horizon

Marot A. et al, Perspectives on Future Power System Control Centers for Energy Transition, 2022

• CROF development **requires** a well-defined **environment and wow**

- CROF development **requires** a well-defined **environment and wow**
- Bring research and development closer

- CROF development **requires** a well-defined **environment and wow**
- Bring research and development closer
 - Research focused on real world data
 - Close the gap between idealistic and realistic problem constraints

- CROF development **requires** a well-defined **environment and wow**
- Bring research and development closer
 - Research focused on real world data
 - Close the gap between idealistic and realistic problem constraints
 - Development with flexibility and modularity in mind
 - Keep track of SOTA
 - Reuse solutions

- CROF development **requires** a well-defined **environment and wow**
- Bring research and development closer
 - Research focused on real world data
 - Close the gap between idealistic and realistic problem constraints
 - Development with flexibility and modularity in mind
 - Keep track of SOTA
 - Reuse solutions
- Data at the center
 - Want to test/deploy on **real world data** as much as possible
 - Difficult to share data

TenneT R&D (at Digital & Data department) Establishing a R&D environment

- CROF development **requires** a well-defined **environment and wow**
- Bring research and development closer
 - Research focused on real world data
 - Close the gap between idealistic and realistic problem constraints
 - Development with flexibility and modularity in mind
 - Keep track of SOTA
 - Reuse solutions
- Data at the center
 - Want to test/deploy on **real world data** as much as possible
 - Difficult to share data
 - SOLUTION: data (format) agnostic platform
 - Easy to share on open-source data
 - Easy to test/tailor on TenneT data

Viebahn J. et al, Potential and challenges of Al-powered decision support for short-term system operations, 2022

C2 - Internal Information

• Ongoing research collaborations

- Ongoing research collaborations
 - GNN for Grid Control (German Funded Project)

- Ongoing research collaborations
 - GNN for Grid Control (German Funded Project)
 - Al4RealNet (Horizon Europe Project)

- Ongoing research collaborations
 - GNN for Grid Control (German Funded Project)
 - Al4RealNet (Horizon Europe Project)
 - Several MSc/PhD students @ TenneT focusing on
 - GNNs
 - MARL
 - MORL

- Ongoing research collaborations
 - GNN for Grid Control (German Funded Project)
 - Al4RealNet (Horizon Europe Project)
 - Several MSc/PhD students @ TenneT focusing on
 - GNNs
 - MARL
 - MORL
- Literature
 - Marot A. et al 2022: Perspectives on Future Power System Control Centers for Energy Transition, Journal of Modern Power Systems and Clean Energy
 - Viebahn J. et al 2022: Potential and challenges of AI-powered decision support for short-term system operations, CIGRE Paris session
 - Viebahm J. et al 2024: GridOptions Tool: Real-World Day-Ahead Congestion Management using Topological Remedial Actions, CIGRE Paris session

Thank you for you attention

February 7, 2023 C2 - Internal Information