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• One-third of energy is consumed within the built environment in NL

[Phil Vardon, PowerWeb Lunch Lecture, 2015]



Principle of ATES

[http://www.amrathamsterdam.com]

• ATES systems act as seasonal energy storage buffers



Benefits of ATES

• ATES provides sustainable heating and cooling

• Stores large amounts of low quality thermal energy 
(typical capacities: few 100 kW per well)

• Can reduce energy use (and GHG emissions) by 50% for large buildings

– 60-80% energy saving for cooling (80-90% electrical peak reduction)

– 20-30% energy saving for heating

• Around 3000 systems are in use in NL, rapid growth over the past 10 years



Main Challenges

• How to manage this technology at a larger scale?

• We need more ATES systems to meet GHG 
emission reduction goals

• ATES systems accumulate in urban areas

• Current policies are too strict for optimal use of 
subsurface (artificial scarcity)

– Static permits to avoid thermal interference

– Unclear trade-off between individual and overall 
energy savings

– Coordination is required to prevent negative 
interaction

• Socio-technical system with complex       
adoption dynamics:



Research Hypothesis and Approach

Agent-based hybrid

socio-technical modeling

Distributed model-based

predictive control

ATES systems can self-organize subsurface space use to increase efficiency

• Facilitate communication and negotiation

• Use distributed stochastic cooperative control to take account of uncertainties 
and variations in (future) energy demand

• Agent based modeling of socio-technical interactions

• Modeling of subsurface conditions
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Hybrid Socio-Technical Modeling

• Clear trade-off between individual costs 
and GHG savings as function of well 
distance

• Remains present even under uncertainty



Impact of ATES well density on system dynamics

• Improper spatial planning could lead to a “tragedy of the commons”

• Results on a “sandbox” model with idealized dynamics:



Local Case Study

• How do the idealized dynamics 
manifest in realistic conditions 
under operational uncertainties?

• The agent-based model uses data 
for 89 actual and planned wells in 
Utrecht city center for 1998-2016

• Geographic data for building plots 
and spatial constraints



Preliminary Conclusions

• Lack of feedback between static permits and system operation leads to 
inefficient outcomes:

− less than half of permit capacity used

− significant seasonal imbalances that degrade efficiency due to 
unforeseen interactions

• Real clearances are likely larger than planned

− leads to a waste of space for new wells

• Operational uncertainties have at least as much of an impact as planning



Preliminary Conclusions

• Survey of current ATES users about perceived barriers for technology adoption

• Main hurdles identified as

− uncertainty about reliability of technology

− uncertainty about payback

− limited investment budget

− current equipment sufficient

− unclear or complex regulations

• Compared to conventional energy

− environmental performance is considered much better

− operational and capital costs, reliability, and operational complexity   
are considered slightly worse



Paradigm Shift to Reduce Uncertainty?

• The most efficient way to reduce uncertainty is to communicate / 
cooperate between neighboring systems

• How can we develop a self-organizing system that adapts to the 
operational experience?

• Investigate cooperative control schemes that allow a distributed 
solution of the underlying stochastic control problem



Cooperative Control Perspective



Network of Buildings Using Interconnected ATES

• Spatially distributed system, complex 
multivariable, switching, nonlinear 
behavior when coupled with building 
climate controllers

• Strong exogenous disturbances, 
stochastic uncertainty

• Modular operation required         
(plug & play)

• Thermal balance for sustainability  
(no net energy gain or loss over a 
whole year while ensuring user 
comfort)

[Bonte, 2011]



Local Stochastic Control Problem Formulation
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Model-based Predictive Controller (MPC) Real world

Problem description and setup

• Control-oriented building + ATES model development

• Model predictive control formulation for

– Tracking desired building energy demand profile for comfort

– Minimizing building operational cost

– Minimizing thermal imbalance over long time-scales

– Switching between modes of operation



Building Energy Demand Generator

• Complete and detailed building dynamical model

• Desired building temperature (local controller unit)

• Due to uncertain weather conditions, uncertain demand profiles are generated

[cf. Theo Rieswijk, PowerWeb Lunch Lecture, 2016]



Technical Challenges

• Stochastic uncertainty with time-varying 
constraints (weather, energy demand, 
aquifer losses etc.)

• Stochastic Distributed MPC based on 
distributed optimization paradigms

• Modeling paradigm for control versus 
performance assessment (accuracy vs 
computation, widely varying temporal 
and geospatial scales)



Constrained Stochastic Optimal Control Problem

• Control policy parametrization to obtain a less conservative formulation

• Probabilistic interpretation of robustness feature of hard constraints

• Handling mixed-integer optimization together with stochastic programming



Robust Optimization Approach

• Provides a guaranteed level of performance

• Constraints must be satisfied for every disturbance realization in ∆ (worst-case)

• Disturbance realizations are treated equally likely (conservative)

• Often intractable problem formulation due to the unknown disturbance set ∆



Chance Constrained Optimization Approach

• Relaxed version of robust optimization

• Constraints must be satisfied only for most disturbance realizations except 
for a set of probability ≤ ε

• Need to know the probability distribution

• Nonconvex optimization problem and in general hard to solve



Randomized Approximation (Scenario Approach)

• Computationally tractable approximation to chance constrained programs 
(but can be conservative)

• Only a finite number of uncertainty realizations (scenarios) are needed

• Relies on historical data of the uncertainty

• Leads to a convex optimization problem



Nonconvex Randomized Approximation

• Provides a tractable formulation to solve mixed-integer stochastic programs

• A priori probabilistic guarantee on the feasibility of the optimal solution

[Rostampour - Keviczky, ECC, 2016]

Benchmark Approach

• Currently investigating distributed and hierarchical implementations using 
ADMM and proximal minimization type algorithms

• Numerical study shows almost centralized performance, formal convergence 
results are under development

[W.W. Ananduta, MSc thesis, 2016]



Closed-Loop Interconnection for Simulation



Preliminary Results for Three Agents

• Centralized control with perfect information sharing (aims to prevent overlap between 
wells of opposite temperatures)

• Decoupled, local controller without any communication or knowledge of neighbors



Preliminary Results for Three Agents



Preliminary Results for Three Agents

• The centralized controller enables higher efficiency by better managing the negative 
thermal interactions between wells of opposite temperatures.



Next Steps

• Case study for larger-scale, regional ATES development in Amsterdam 
(212 km2, 478 wells)

• Self-organization as a way to deal with technical/policy complexity

• Assess the potential benefits of cooperation

− Level of increased efficiency

− Sharing of stored thermal energy

• Develop control algorithms for distributed implementation

− Handle local and shared uncertainties

− Probabilistic feasibility guarantees of interaction constraints

− Ensure a certain level of performance

• Online optimization based data-driven approach to decision making 
under uncertainty

• Investigate cooperative control with privacy-aware information handling

• Results could be used for advising policy changes, mechanism design

• Pilot implementation project in Amsterdam
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