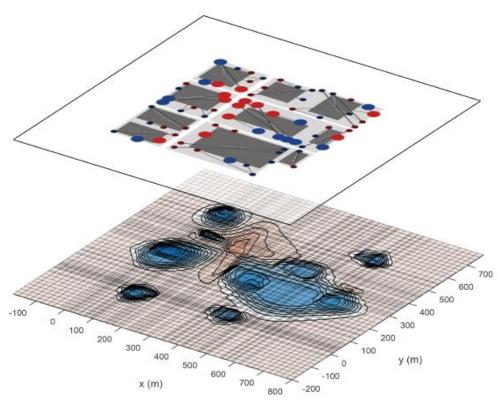
Aquifer Thermal Energy Storage (ATES) Smart Grids

Tamás Keviczky

t.keviczky@tudelft.nl http://www.dcsc.tudelft.nl/~tkeviczky/

Delft Center for Systems and Control Delft University of Technology The Netherlands

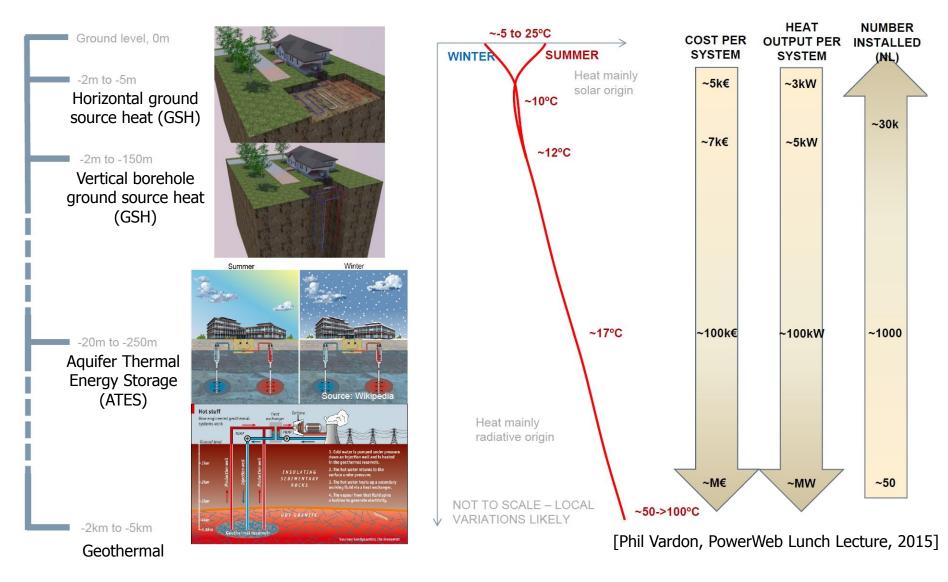


PowerWeb Lunch Lecture

Delft, The Netherlands

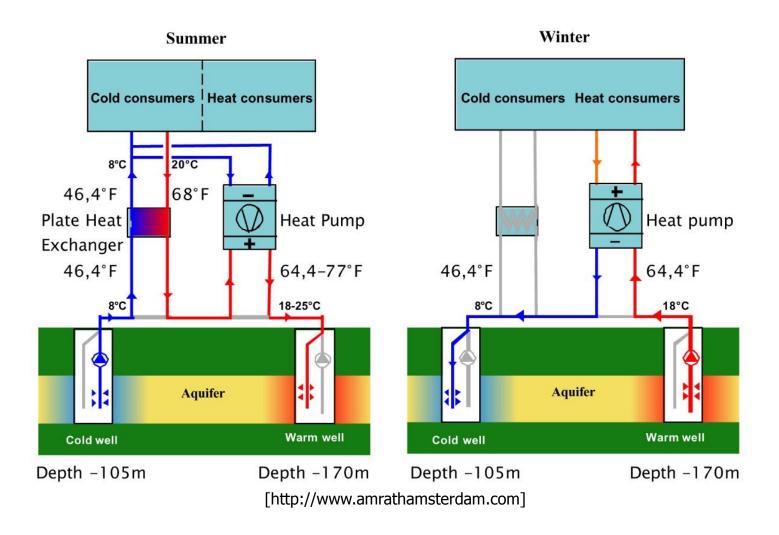
September 8, 2016

Ground Source Heat Landscape



• One-third of energy is consumed within the built environment in NL

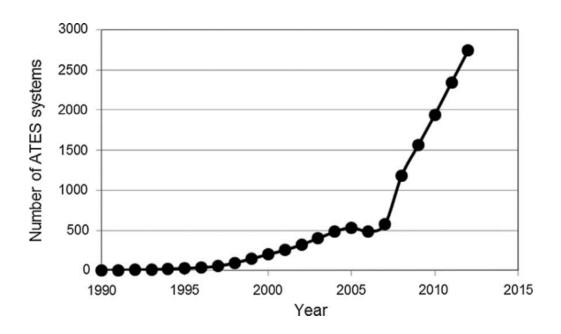
Principle of ATES



ATES systems act as seasonal energy storage buffers

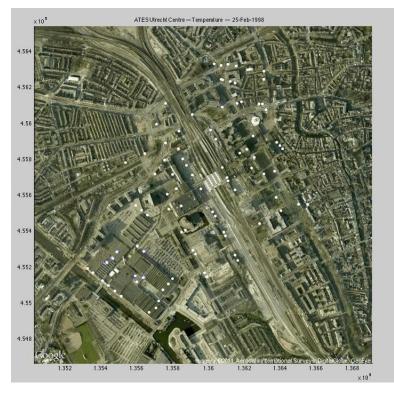
Benefits of ATES

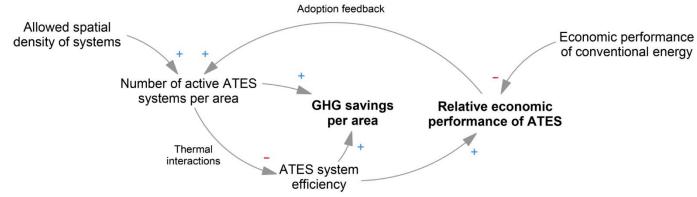
- ATES provides sustainable heating and cooling
- Stores large amounts of low quality thermal energy (typical capacities: few 100 kW per well)
- Can reduce energy use (and GHG emissions) by 50% for large buildings
 - 60-80% energy saving for cooling (80-90% electrical peak reduction)
 - 20-30% energy saving for heating
- Around 3000 systems are in use in NL, rapid growth over the past 10 years



Main Challenges

- How to manage this technology at a larger scale?
- We need more ATES systems to meet GHG emission reduction goals
- ATES systems accumulate in urban areas
- Current policies are too strict for optimal use of subsurface (artificial scarcity)
 - Static permits to avoid thermal interference
 - Unclear trade-off between individual and overall energy savings
 - Coordination is required to prevent negative interaction
- Socio-technical system with complex adoption dynamics:

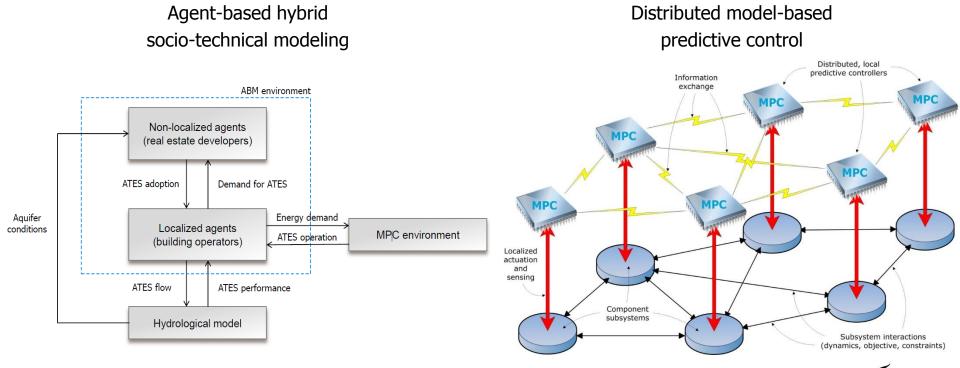




Research Hypothesis and Approach

ATES systems can self-organize subsurface space use to increase efficiency

- Facilitate communication and negotiation
- Use distributed stochastic cooperative control to take account of uncertainties and variations in (future) energy demand
- Agent based modeling of socio-technical interactions
- Modeling of subsurface conditions



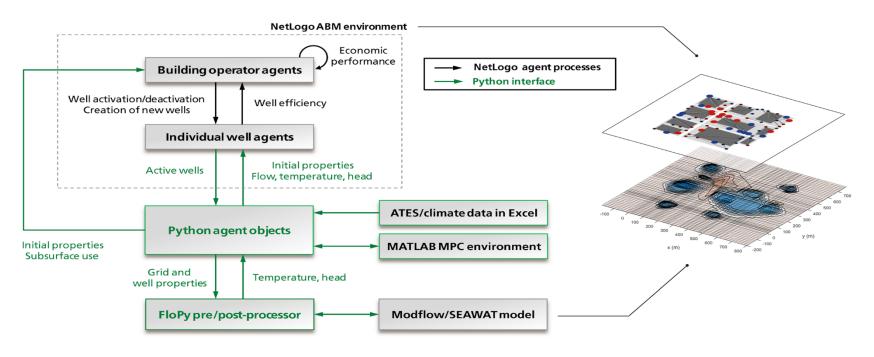
Multidisciplinary Problem

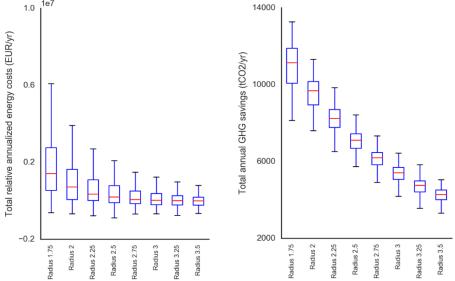
ATES Integration, Geohydrology Martin Bloemendal (Postdoc – TUD CEG)

Hybrid Socio-Technical Modeling Marc Jaxa-Rozen (PhD – TUD TPM)

Distributed Stochastic Cooperative Control Vahab Rostampour (PhD – TUD DCSC)

Hybrid Socio-Technical Modeling

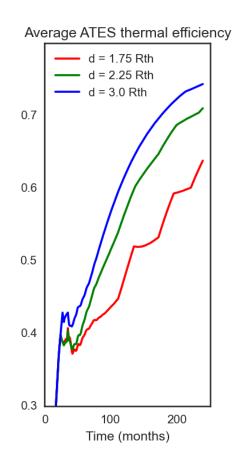


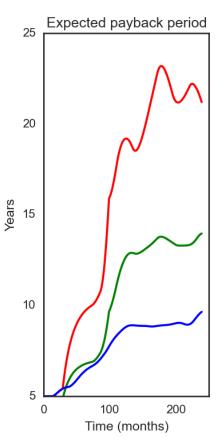


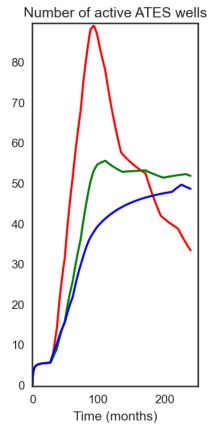
- Clear trade-off between individual costs and GHG savings as function of well distance
- Remains present even under uncertainty

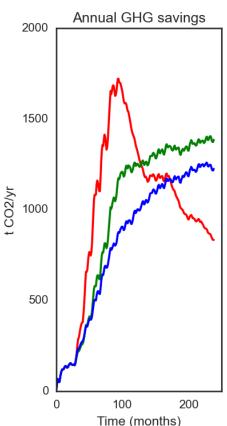
Impact of ATES well density on system dynamics

- Improper spatial planning could lead to a "tragedy of the commons"
- Results on a "sandbox" model with idealized dynamics:







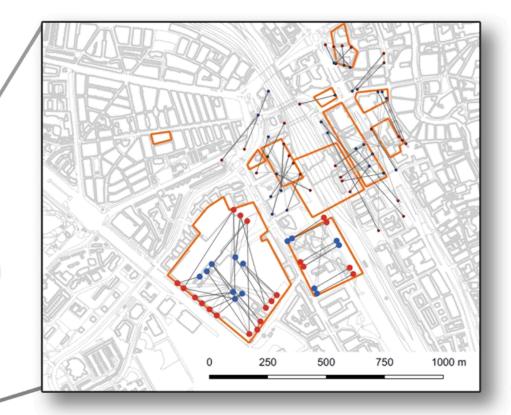


Local Case Study

Amsterdam

 How do the idealized dynamics manifest in realistic conditions under operational uncertainties?

Utrecht



- The agent-based model uses data for 89 actual and planned wells in Utrecht city center for 1998-2016
- Geographic data for building plots and spatial constraints

Preliminary Conclusions

- Lack of feedback between static permits and system operation leads to inefficient outcomes:
 - less than half of permit capacity used
 - significant seasonal imbalances that degrade efficiency due to unforeseen interactions
- Real clearances are likely larger than planned
 - leads to a waste of space for new wells
- Operational uncertainties have at least as much of an impact as planning

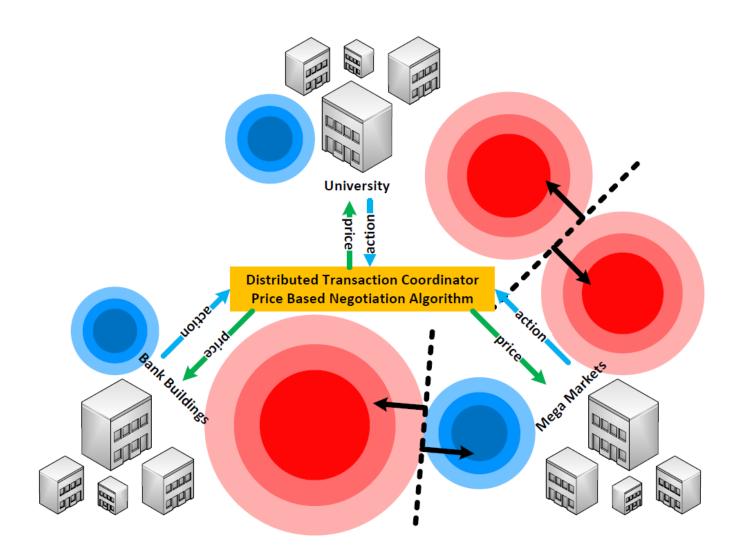
Preliminary Conclusions

- Survey of current ATES users about perceived barriers for technology adoption
- Main hurdles identified as
 - uncertainty about reliability of technology
 - uncertainty about payback
 - limited investment budget
 - current equipment sufficient
 - unclear or complex regulations
- Compared to conventional energy
 - environmental performance is considered much better
 - operational and capital costs, reliability, and operational complexity are considered slightly worse

Paradigm Shift to Reduce Uncertainty?

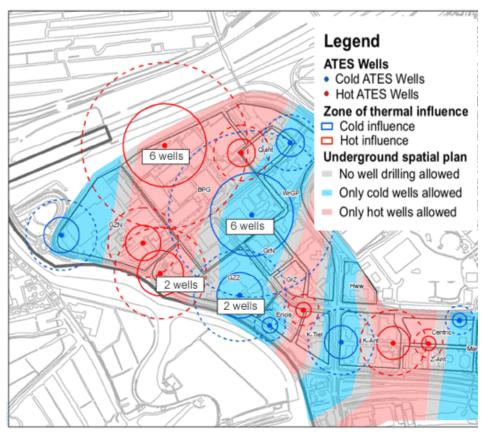
- The most efficient way to reduce uncertainty is to communicate / cooperate between neighboring systems
- How can we develop a self-organizing system that adapts to the operational experience?
- Investigate cooperative control schemes that allow a distributed solution of the underlying stochastic control problem

Cooperative Control Perspective



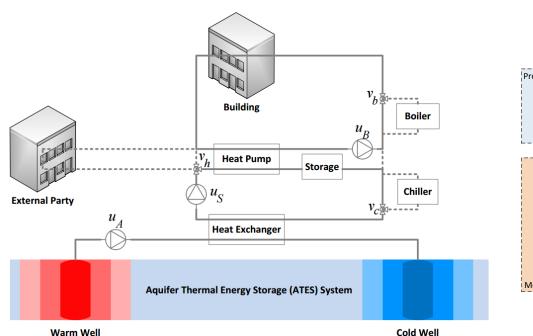
Network of Buildings Using Interconnected ATES

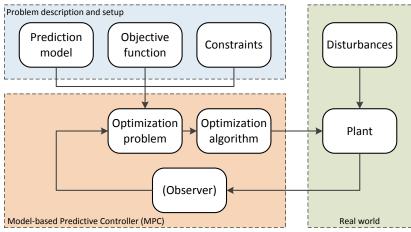
- Spatially distributed system, complex multivariable, switching, nonlinear behavior when coupled with building climate controllers
- Strong exogenous disturbances, stochastic uncertainty
- Modular operation required (plug & play)
- Thermal balance for sustainability (no net energy gain or loss over a whole year while ensuring user comfort)



[Bonte, 2011]

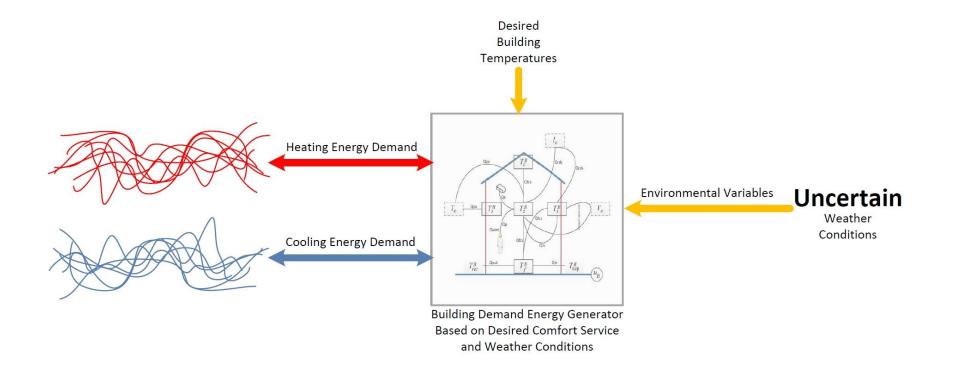
Local Stochastic Control Problem Formulation





- Control-oriented building + ATES model development
- Model predictive control formulation for
 - Tracking desired building energy demand profile for comfort
 - Minimizing building operational cost
 - Minimizing thermal imbalance over long time-scales
 - Switching between modes of operation

Building Energy Demand Generator

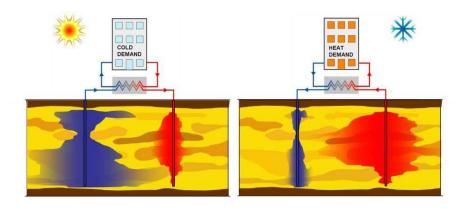


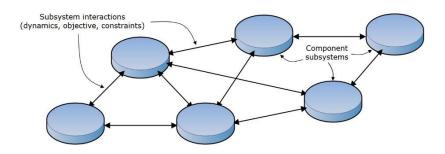
- Complete and detailed building dynamical model
- Desired building temperature (local controller unit)
- Due to uncertain weather conditions, uncertain demand profiles are generated

[cf. Theo Rieswijk, PowerWeb Lunch Lecture, 2016]

Technical Challenges

- Stochastic uncertainty with time-varying constraints (weather, energy demand, aquifer losses etc.)
- Stochastic Distributed MPC based on distributed optimization paradigms
- Modeling paradigm for control versus performance assessment (accuracy vs computation, widely varying temporal and geospatial scales)





Constrained Stochastic Optimal Control Problem

minimize
$$J(x_k, u_k) := \mathbb{E}\left[\sum_{k=0}^{M} x_k^{\top} Q x_k + \sum_{k=0}^{M-1} u_k^{\top} R u_k\right], \ Q \succeq 0, \ R \succ 0$$
 subject to $f_k(x_k, u_k, y_k) \leq 0, \ y_k \in \{0, 1\}$ $x_k \in \mathcal{X}, \ k = 0, 1, \dots, M$

- Control policy parametrization to obtain a less conservative formulation
- Probabilistic interpretation of robustness feature of hard constraints
- Handling mixed-integer optimization together with stochastic programming

Robust Optimization Approach

$$\begin{cases} & \min_{x} \quad c(x) \\ & \text{s.t.} \quad g(x,\delta) \leq 0, \quad \forall \delta \in \Delta \\ & x \in \mathcal{X} \end{cases}$$

- Provides a guaranteed level of performance
- Constraints must be satisfied for every disturbance realization in Δ (worst-case)
- Disturbance realizations are treated equally likely (conservative)
- ullet Often intractable problem formulation due to the unknown disturbance set Δ

Chance Constrained Optimization Approach

$$\begin{cases} & \min_{x} \quad c(x) \\ & \text{s.t.} \quad \mathbb{P}\left[g(x,\delta) \leq 0\right] \geq 1 - \varepsilon \\ & \quad x \in \mathcal{X} \end{cases}$$

- Relaxed version of robust optimization
- Constraints must be satisfied only for most disturbance realizations except for a set of probability $\leq \varepsilon$
- Need to know the probability distribution
- Nonconvex optimization problem and in general hard to solve

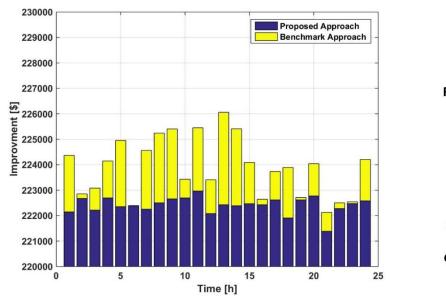
Randomized Approximation (Scenario Approach)

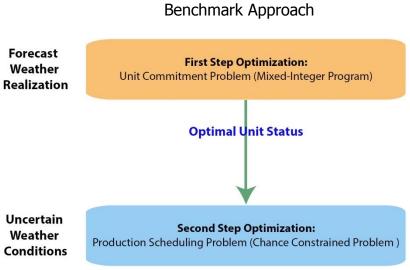
$$\begin{cases} & \min_{x} \quad c(x) \\ & \text{s.t.} \quad g(x, \delta_i) \leq 0, \quad \forall i \in \{1, \cdots, N\} \\ & x \in \mathcal{X} \end{cases}$$

- Computationally tractable approximation to chance constrained programs (but can be conservative)
- Only a finite number of uncertainty realizations (scenarios) are needed
- Relies on historical data of the uncertainty
- Leads to a convex optimization problem

Nonconvex Randomized Approximation

- Provides a tractable formulation to solve mixed-integer stochastic programs
- A priori probabilistic guarantee on the feasibility of the optimal solution

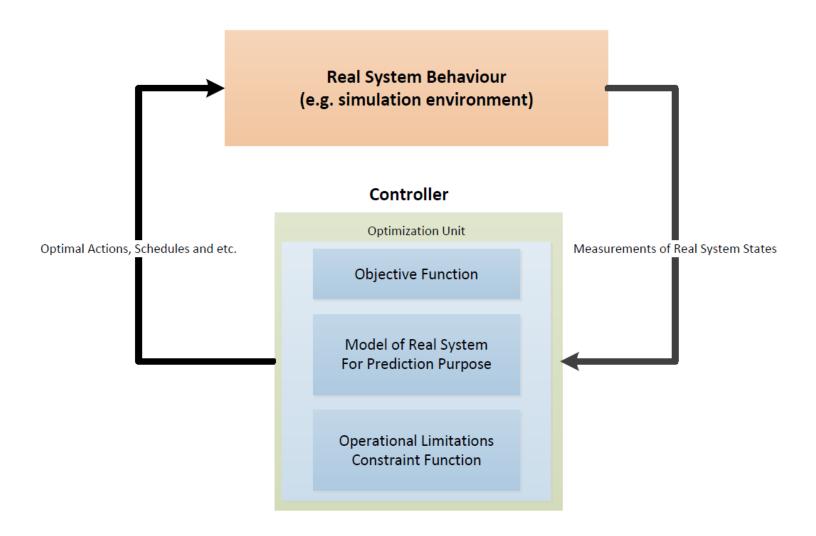




[Rostampour - Keviczky, ECC, 2016]

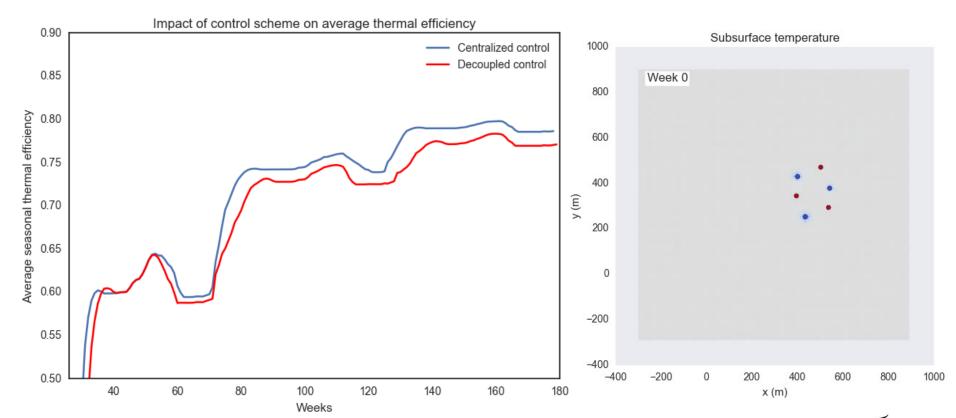
- Numerical study shows almost centralized performance, formal convergence results are under development

Closed-Loop Interconnection for Simulation

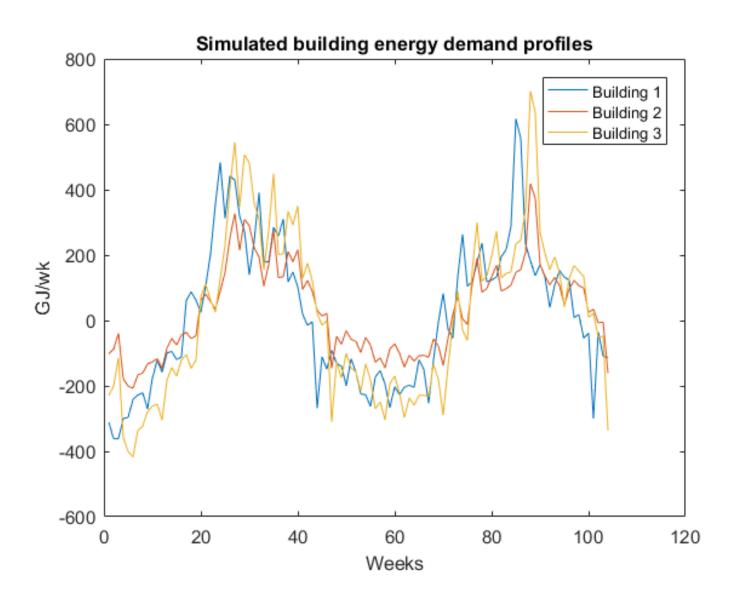


Preliminary Results for Three Agents

- Centralized control with perfect information sharing (aims to prevent overlap between wells of opposite temperatures)
- Decoupled, local controller without any communication or knowledge of neighbors

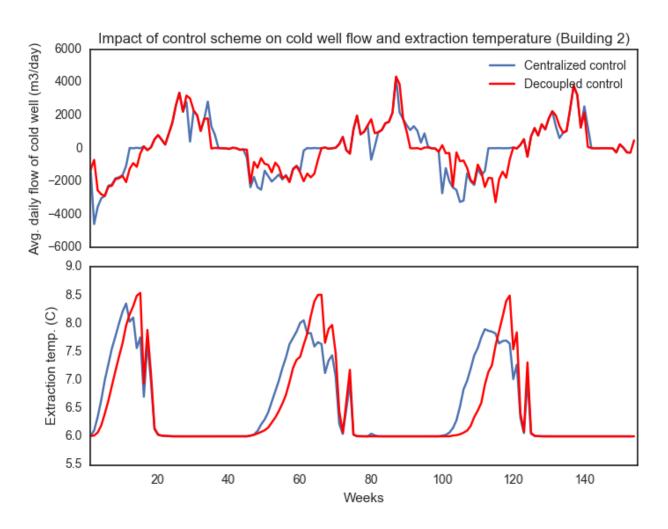


Preliminary Results for Three Agents



Preliminary Results for Three Agents

 The centralized controller enables higher efficiency by better managing the negative thermal interactions between wells of opposite temperatures.



Next Steps

- Case study for larger-scale, regional ATES development in Amsterdam (212 km², 478 wells)
- Self-organization as a way to deal with technical/policy complexity
- Assess the potential benefits of cooperation
 - Level of increased efficiency
 - Sharing of stored thermal energy
- Develop control algorithms for distributed implementation
 - Handle local and shared uncertainties
 - Probabilistic feasibility guarantees of interaction constraints
 - Ensure a certain level of performance
- Online optimization based data-driven approach to decision making under uncertainty
- Investigate cooperative control with privacy-aware information handling
- Results could be used for advising policy changes, mechanism design
- Pilot implementation project in Amsterdam

Partners

References

- Ananduta, W.W. (2016) Distributed Energy Management in Smart Thermal Grids with Uncertain Demands, Delft University of Technology, MSc Thesis.
- Bloemendal, M., M. Jaxa-Rozen, and V. Rostampour (2016) ATES smart grids research project overview and first results, European Geosciences Union, General Assembly.
- Bonte, M., P. J. Stuyfzand, A. Hulsmann, and P. Van Beelen (2011) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecology and Society, 16(1):22. http://www.ecologyandsociety.org/vol16/iss1/art22/
- Jaxa-Rozen, M., M. Bloemendal, J. Kwakkel, and V. Rostampour (2016) Hybrid modelling for ATES planning and operation in the Utrecht city centre, European Geosciences Union, General Assembly.
- Rostampour, V., and T. Keviczky (2016) Robust randomized model predictive control for energy balance in smart thermal grid, European Control Conference.
- Rostampour, V., M. Bloemendal, M. Jaxa-Rozen, and T. Keviczky (2016) A control-oriented model for combined building climate comfort and aquifer thermal energy storage system, European Geothermal Congress.
- Rostampour, V., M. Jaxa-Rozen, M. Bloemendal, and T. Keviczky (2016) Building climate energy management in smart thermal grids via aquifer thermal energy storage systems, to appear in Special Issue of Energy Procedia Journal.

