

Welcome!

- Quick introduction
- Intro Alliander
- Energy transition
- Sample projects
- 'De Buurtbatterij'

Werner van Westering

Education:

2007 – 2010 Werktuigbouwkunde

2010 - 2011 Bestuur C.S.R. Delft

2011 – 2013 Master Systems & Control

Work experience:

2013 – 2014 Technical trainee

2014 – now (Senior) data scientist

2015 – now PhD. candidate (DCSC)

A small introduction

Introduction Alliander

Aantal klantaansluitingen

Aantal medewerkers

5,7 mln

7.170

Uitvalduur elektriciteit 1

CO2-uitstoot

19,9 min.

921_{kton}

Netto-omzet

Investeringen

1,7 € mld

570€mln

Balanstotaal

Resultaat

7,7€ mld

323€mln

Omvang elektriciteitsnetwerk

Omvang gasnetwerk

88.000 km

 $42.700 \, \text{km}$

1 Betreft Liander

Modeling the energy transition

How often will this happen?

- Research question: What are the consequences of the energy transition?
- Approach: Linear load flow simulation with profiles and scenarios.
- Challenges: How do you simulate 20
 million electricity cables in a short time?
 How do you deal with 100,000+ data errors?

30%

20%

Overloaded transformers per postal code area, 2050

ANDES technology adoption model

Input: 150 demographical aspects

Socio-demographic, e.g.:

- income
- education
- Life phase

House properties, e.g.:

- Type of house
- Value house
- Owned/rented

Financial info, e.g.:

- Savings
- insurance
- Other financial info

Vehicle information, e.g.: Number owned

- Segment
- Age

- Media, e.g.:
 Internet behaviour
- MagazinesTV channel preference

Buying habits, e.g.:

- Clothing segment
- Holidays
- Charity

000 Etcetera

Analysis: Probability of adoption is determined

Multiple regression techniques were studied.

Regression analysis

Output: The adoption is predicted at zip-code level per technology up to 2050

• The result is an absolute number of EVs, HPs, and PV systems per zip code for every year.

Local adoption for each household...

...in the Liander Service Area

New insights warrant new decisions

Dilemma I: Is everybody equal or are some more equal than others?

Dilemma II: Lower CO2 emissions or more reliability?

Other projects within Alliander

Prediction of energy profiles

All is being been applied for several years now within Alliander

Al Applications

Risk models

Excavation damage model calculates risk score for KLIC reports.

Consumption models

Machine learning methods are used to cluster and anonomize 50,000 smart meter energy profiles. (Project PULSE)

Decision models

IntelEvent shows the outage cable and calculates a reconfiguration.

Innovation pilots

Image recognition

Customer installations are classified using photos from engineers and customers.

Natural language processing

Alliander has many years of (often hand-written) legacy documentation which contains valuable information.

Portfolio planning

Agent based models are used to train a decision AI which determines the optimal investment strategy

Other projects within Alliander

- Load flow engine development
- Automization
 - Grid design
 - Regional Energy Strategies (RES)
 - Network capacity checks
- Optimization
 - Grid topology
 - Outage reduction
 - Network losses minimization
 - Sensor deployment
 - Step changing transformers

- Network capacity extention
 - Large scale load flow
 - Substation transformer control
 - Curtailment
- Machine learning
 - Network portfolio generation
 - Nonlinear load flow
 - Fraud detection
 - Outage prediction
 - Smart meter deployment

Sample project: Community battery 'De Buurtbatterij' nrc.nl>

Je stroom bewaren in de buurtbatterij

Elektriciteitsopslag

Wind- en zonne-energie veroorzaakten dit jaar stroomoverschotten. In Rijsenhout experimenteren ze met opslaan in de buurt.

Hester van Santen @ 27 november 2017

Project description Buurtbatterij

Location

Rijsenhout

Realization (detailed layout of the plot)

Lengte perceel 441 cm Realization (1)

Realization (2)

Measurement hardware

LV-cable and transformer

Measurement LV-case

- Wago devices
- Wireless connection (4G)
- VPN-tunnel
- Rogowski-coils
- LV-cable Buurtbatterij

Measurement MSR

- Wago devices
- Wireless connection (4G)
- VPN-tunnel
- Rogowski-coils
- · Secondary side of transformer

IT architecture

IT/01

Charge path optimizer

Control Buurtbatterij

Control Buurtbatterij

Paper Buurtbatterij

International Journal of Electrical Power & Energy Systems

Volume 114, January 2020, 105349

Low voltage power grid congestion reduction using a community battery: Design principles, control and experimental validation

Werner van Westering a, b ⊠, Hans Hellendoorn a

Traineeship Alliander

https://www.werkenbijalliander.com/traineeships 2nd year 1st year Assigment 4 Assigment 3 **Assigment 1** Assigment 2 Learning and development process

