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Short-term Energy Scheduling

m Present in all day-ahead & intra-day markets around the world

m Unit Commitment (UC): considered as the optimal tool for
short-term energy scheduling

m Wind & Solar introduce uncertainty = more difficult planning:

m Reserve-Based deterministic UC
m Stochastic or Robust UCs (endogenous reserves)

m Optimal quantity of reserves must be scheduled

m providing flexibility for real-time operation
m = the system can face real-time uncertainty

Underlying assumption:
UC generation schedule can always deliver what it promises
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Dealing with “Certainty” Energy-Based Scheduling

Outline

Assumptions: Dealing with “Certainty”
m Energy-Based Scheduling vs. Operation
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Dealing with “Certainty” Energy-Based Scheduling

Energy-Based Scheduling: what is scheduled
Energy blocks satisfying hourly demand:
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reserves provide the difference
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Dealing with “Certainty” Energy-Based Scheduling

Energy-Based Scheduling: Deployment
Reserve deployment and impact on frequency
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Energy-Based Scheduling: Deployment

Reserve deployment and impact on frequency
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Dealing with “Certainty” Energy-Based Scheduling

Energy-Based Scheduling: Impact on Frequency
Frequency deviations in the European grid: years 2003-2008!

Evening frequency average profile - winters 2003 to 2008 (November to March - Monday to Friday)
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LENTSO-e, “Frequency Quality Investigation, excerpt of the final report,” UCTE AD-HOC, Report, Aug. 2008
2ENTSO-e and Eurelectric, “Deterministic Frequency Deviations: 2nd stage impact analysis,” ENTSO-¢, Report, Dec.
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Energy-Based Scheduling: Impact on Frequency
Frequency deviations in the European grid: years 2003-2008!

Evening frequency average profile - winters 2003 to 2008 (November to March - Monday to Friday)
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m Frequency deviations equivalent to 2GW generation outages.
® Many times everyday and increasing?

m excessive use of primary & secondary reserves = 1% & [flex.

LENTSO-e, “Frequency Quality Investigation, excerpt of the final report,” UCTE AD-HOC, Report, Aug. 2008

2ENTSO-e and Eurelectric, “Deterministic Frequency Deviations: 2nd stage impact analysis,” ENTSO-¢, Report, Dec.
2012
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Energy-Based Scheduling: Impact on Frequency

m As power systems change, the traditional Energy Scheduling
paradigm must change

m Freq. deviations increases as wind & solar penetration increases
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Dealing with “Certainty” Energy-Based Scheduling

Energy-Based Scheduling: Impact on Frequency

m As power systems change, the traditional Energy Scheduling
paradigm must change

m Freq. deviations increases as wind & solar penetration increases

m Microgrids & smart grids could face worse consequences (| inertia)
m Even DC systems might face similar problems (in voltage)
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Dealing with “Certainty” Infeasible Energy Delivery
Outline

Assumptions: Dealing with “Certainty”

m Infeasible Energy Delivery
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Dealing with “Certainty” Infeasible Energy Delivery

Energy Scheduling

Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 200 MW /h

Traditional UC
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3X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and generation scheduling in the deregulated electric
power market,” |EEE Transactions on Power Systems, vol. 15, no. 4, pp. 1275-1280, Nov. 2000
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Energy Scheduling

Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 200 MW /h
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Energy Scheduling

Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW /h
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Dealing with “Certainty” Infeasible Energy Delivery

Energy Scheduling

Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW /h

Traditional UC Feasible energy profile
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Infeasible energy delivery3
Overestimated ramp availability

4

A clear difference between power and energy is required

3X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and generation scheduling in the deregulated electric
power market,” |EEE Transactions on Power Systems, vol. 15, no. 4, pp. 1275-1280, Nov. 2000
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Dealing with “Certainty” Power-based UC
Outline

Assumptions: Dealing with “Certainty”

m Power Scheduling: The Power-based UC
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Dealing with “Certainty” Power-based UC

Energy vs. Power Profiles

Demand Example

1500} oy Demand requirements
—D2 [MW]
1400/ 1 Hour D1 D2

Ramp [MW/h]  9-10 50 100
Ramp [MW/h] 10-11 50 0

Power [MW]
P
w
o
o

-
N}
=}
=)

~ \

\/

6 7 8 9 10 11 12 13 14 15 16 17
Time [h]

4G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” /EEE Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014
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Planning 1 Energy Profile = cannot guarantee the final power profile*
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I
Planning 1 Energy Profile = cannot guarantee the final power profile
Planning 1 Power Profile = guarantees the unique energy profile3

4

4G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” /EEE Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014
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Dealing with “Certainty” Power-based UC

Power Scheduling: Power-Based UC

UC was reformulated for better scheduling (| costs)®:°

m Key features:
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6G. Morales-Espafia, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” en, OR Spectrum, pp. 1-22, May 2015
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Power Scheduling: Power-Based UC

UC was reformulated for better scheduling (| costs)®:°

m Key features:

. . . D1&D2 [MWh]
m Clear distinction: energy vs. power %9 AN [oimw
m Linear piecewise power scheduling 10

m Power demand balance
m Reserve constraints depending on
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5G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014
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6G. Morales-Espafia, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” en, OR Spectrum, pp. 1-22, May 2015
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Power Scheduling: Power-Based UC

UC was reformulated for better scheduling (| costs)®:°

m Key features:

. . . D1&D2 [MWh]
m Clear distinction: energy vs. power %9 AN [oimw
m Linear piecewise power scheduling 10

m Power demand balance
m Reserve constraints depending on

ramp availability ) \v
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m Challenge:

m Trade-off: Model detail vs. Computational burden57

5G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” /EEE Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014
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6G. Morales-Espafia, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” en, OR Spectrum, pp. 1-22, May 2015

7G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and compact MILP formulation of start-up and shut-down
ramping in unit commitment,” /EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1296, 2013
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Dealing with “Certainty”

Power-based UC

Energy- vs. Power-Based Scheduling

Energy-Based (block, stepwise) vs. Power-Based (ramp, piecewise)
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Dealing with “Certainty” Power-based UC

Energy- vs. Power-Based Scheduling

Energy-Based (block, stepwise) vs. Power-Based (ramp, piecewise)
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Case Studies: “ldeal” Stochastic UC
Outline
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Case Studies: “ldeal” Stochastic UC

IEEE-118 Bus System

m 54 thermal units; 118 buses; 186 transmission lines; 91 loads

m + 10 Quick-start units (~10x more expensive)
m 24 hours time span
m 3 wind farms, 20 wind power scenarios

3
TUDelft 16 /24



Case Studies: “ldeal” Stochastic UC

Case Study

m 2 Stochastic UC formulations:

m E-UC: Traditional Energy-based UC
m P-UC: Power-based UC

P —/Scenarios
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Case Studies: “ldeal” Stochastic UC

Case Study

m 2 Stochastic UC formulations:

m E-UC: Traditional Energy-based UC
m P-UC: Power-based UC

P —/Scenarios

=

m All problems solved with Cplex 12.6.0, stop criteria:

ty,
»

m 0.05% opt. tolerance or 24h time limit
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Evaluating “ldeal” Stochastic UCs

m Scheduling Stage:

m Obtains hourly commitment decisions for slow-start units
m by solving hourly network-constrained slow-start UCs
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Evaluating “lIdeal” Stochastic UCs

m Scheduling Stage:

m Obtains hourly commitment decisions for slow-start units
m by solving hourly network-constrained slow-start UCs

m Evaluation Stage: Simulating “ideal” stochastic UCs

m by Using in-sample wind power scenarios

m 5 min dispatch decisions for all units

® + Quick-start units' commitment decisions

m by solving 5-min network-constrained quick-start UC
m Penalizations:

m Demand-balance violation costs: 10000 $/MWh
m Network violation costs: 5000 $/MWh
m Negative wind bids: -50 $/MWh
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Case Studies: “ldeal” Stochastic UC

Energy-Based vs. Power-based UC: Evaluation

Scheduling (hourly) Real-time dispatch (5-min)
Costs' [k$] | Curt [%] | Costs' [k$] | Curt [%]
E-UC 747.3 1.3
P-UC 734.3 5.0

T Commitment + dispatch + penalty costs

m In the scheduling stage:

m Power-based UC seems to be less flexible (1 Curt)
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Case Studies: “ldeal” Stochastic UC

Energy-Based vs. Power-based UC: Evaluation

Scheduling (hourly) Real-time dispatch (5-min)
Costs' [k$] | Curt [%] | Costs' [k$] | Curt [%]

E-UC 747.3 1.3 804.2 8.1
P-UC 734.3 5.0 766.1 5.4

T Commitment + dispatch + penalty costs

m In the scheduling stage:
m Power-based UC seems to be less flexible (1 Curt)

m In the evaluation stage: the E-UC
m Increased Total Costs by 7.6% and Wind Curt. by 523%

m and the P-UC
m Increased Total Costs by 4.3% and Wind Curt. by 7.4%

m P-UCGs turned out to be more flexible (] Curt) than E-UC
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Conclusions

Conclusions

m Energy Scheduling cannot deal efficiently with known conditions

m Not even an “ideal” stochastic energy-based UC
m = using the reserves to deal with known conditions in real-time

m To achieve an optimal economic operation

m All predictable events must be scheduled in advance
m only unforeseen events must be addressed using reserves

m Power-Based Scheduling

m More accurate system representation
m = better exploitation of unit's flexibility in real-time

m Efficiency of scheduling approaches must be measured based on
ex-post performance, and not ex-ante as usually done

m by using electrical system models measuring the use of primary,
secondary & tertiary reserves
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Conclusions

Research Challenge: URSES project

m Create markets based on power trajectories:

m Providing the right price signals for the system’s energy & ramp
requirements
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Research Challenge: URSES project

m Create markets based on power trajectories:

m Providing the right price signals for the system’s energy & ramp
requirements
m Better following the actual demand

® Avoiding unnecessary and costly use of reserves
m Avoiding possibility of gaming: energy vs. reserve markets

Demand

—— Block Scheduling
Ramp Scheduling

<3
TUDelft 221/24



Conclusions

Questions

Thank you for your attention

For questions and possible future collaboration:
g.a.moralesespama@tudelft.nl
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