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Unit Commitment (UC): considered as the optimal tool for
short-term energy scheduling

Wind & Solar introduce uncertainty ⇒ more difficult planning:

Reserve-Based deterministic UC
Stochastic or Robust UCs (endogenous reserves)

Optimal quantity of reserves must be scheduled

providing flexibility for real-time operation
⇒ the system can face real-time uncertainty

Underlying assumption:

UC generation schedule can always deliver what it promises
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Generators try to follow the stepwise energy profile
Generation-Demand balance is needed in real time

⇓

reserves provide the difference
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Dealing with “Certainty” Energy-Based Scheduling

Energy-Based Scheduling: Deployment
Reserve deployment and impact on frequency
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Dealing with “Certainty” Energy-Based Scheduling

Energy-Based Scheduling: Impact on Frequency
Frequency deviations in the European grid: years 2003-20081

considered1between 50 Hz +/- 50 mHz, with exceptional excursions outside this interval. 

Observations show that a 1300 MW generation outage usually leads to a frequency drop of around 

50 mHz. 

The following figure shows the “evening frequency average profile 2003 to 2008 between 19:00 

and 0:05 (November to March – Monday to Friday)”: 
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1ENTSO-e, “Frequency Quality Investigation, excerpt of the final report,” UCTE AD-HOC, Report, Aug. 2008
2ENTSO-e and Eurelectric, “Deterministic Frequency Deviations: 2nd stage impact analysis,” ENTSO-e, Report, Dec.

2012
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Frequency deviations equivalent to 2GW generation outages.

Many times everyday and increasing2

excessive use of primary & secondary reserves ⇒ ↑$ & ↓flex.
1ENTSO-e, “Frequency Quality Investigation, excerpt of the final report,” UCTE AD-HOC, Report, Aug. 2008
2ENTSO-e and Eurelectric, “Deterministic Frequency Deviations: 2nd stage impact analysis,” ENTSO-e, Report, Dec.

2012
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Microgrids & smart grids could face worse consequences (↓ inertia)
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Microgrids & smart grids could face worse consequences (↓ inertia)
Even DC systems might face similar problems (in voltage)
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Energy Scheduling
Generation levels are usually considered as energy blocks.
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Traditional UC

3X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and generation scheduling in the deregulated electric
power market,” IEEE Transactions on Power Systems, vol. 15, no. 4, pp. 1275–1280, Nov. 2000
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Dealing with “Certainty” Infeasible Energy Delivery

Energy Scheduling
Generation levels are usually considered as energy blocks.
Example: P = 300MW; P = 100MW; Up/Down ramp rate: 100 MW/h

Traditional UC Feasible energy profile

Infeasible energy delivery3

Overestimated ramp availability
⇓

A clear difference between power and energy is required

3X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and generation scheduling in the deregulated electric
power market,” IEEE Transactions on Power Systems, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

10 / 24



Dealing with “Certainty” Power-based UC

Outline

1 Introduction

2 Assumptions: Dealing with “Certainty”
Energy-Based Scheduling vs. Operation
Infeasible Energy Delivery
Power Scheduling: The Power-based UC

3 Case Studies: “Ideal” Stochastic UC

4 Conclusions

11 / 24
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Planning 1 Power Profile ⇒ guarantees the unique energy profile3
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Challenge:

Trade-off: Model detail vs. Computational burden6,7

5G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and
reserves based on ramp scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–488, 2014
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Case Studies: “Ideal” Stochastic UC

IEEE-118 Bus System

54 thermal units; 118 buses; 186 transmission lines; 91 loads

+ 10 Quick-start units (∼10x more expensive)
24 hours time span
3 wind farms, 20 wind power scenarios
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Case Studies: “Ideal” Stochastic UC

Case Study

2 Stochastic UC formulations:

E-UC: Traditional Energy-based UC
P-UC: Power-based UC
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Case Study

2 Stochastic UC formulations:

E-UC: Traditional Energy-based UC
P-UC: Power-based UC

All problems solved with Cplex 12.6.0, stop criteria:

0.05% opt. tolerance or 24h time limit
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Case Studies: “Ideal” Stochastic UC

Evaluating “Ideal” Stochastic UCs

Scheduling Stage:

Obtains hourly commitment decisions for slow-start units
by solving hourly network-constrained slow-start UCs
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Evaluating “Ideal” Stochastic UCs

Scheduling Stage:

Obtains hourly commitment decisions for slow-start units
by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating “ideal” stochastic UCs

by Using in-sample wind power scenarios
5 min dispatch decisions for all units
+ Quick-start units’ commitment decisions
by solving 5-min network-constrained quick-start UC
Penalizations:

Demand-balance violation costs: 10000 $/MWh
Network violation costs: 5000 $/MWh
Negative wind bids: -50 $/MWh

18 / 24



Case Studies: “Ideal” Stochastic UC

Energy-Based vs. Power-based UC: Evaluation

Scheduling (hourly) Real-time dispatch (5-min)
Costs† [k$] Curt [%] Costs† [k$] Curt [%]

E-UC 747.3 1.3

P-UC 734.3 5.0
†Commitment + dispatch + penalty costs

In the scheduling stage:

Power-based UC seems to be less flexible (↑ Curt)
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In the evaluation stage: the E-UC

Increased Total Costs by 7.6% and Wind Curt. by 523%

and the P-UC

Increased Total Costs by 4.3% and Wind Curt. by 7.4%

P-UCs turned out to be more flexible (↓ Curt) than E-UC
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Conclusions

Conclusions

Energy Scheduling cannot deal efficiently with known conditions
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Not even an “ideal” stochastic energy-based UC
⇒ using the reserves to deal with known conditions in real-time

To achieve an optimal economic operation

All predictable events must be scheduled in advance
only unforeseen events must be addressed using reserves

Power-Based Scheduling

More accurate system representation
⇒ better exploitation of unit’s flexibility in real-time

Efficiency of scheduling approaches must be measured based on
ex-post performance, and not ex-ante as usually done

by using electrical system models measuring the use of primary,
secondary & tertiary reserves
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Research Challenge: URSES project

Create markets based on power trajectories:

Providing the right price signals for the system’s energy & ramp
requirements
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Conclusions

Research Challenge: URSES project

Create markets based on power trajectories:

Providing the right price signals for the system’s energy & ramp
requirements

Better following the actual demand

Avoiding unnecessary and costly use of reserves
Avoiding possibility of gaming: energy vs. reserve markets
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Conclusions

Questions

Thank you for your attention

For questions and possible future collaboration:
g.a.moralesespama@tudelft.nl
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