How Good are The Traditional Optimal Energy Scheduling Approaches?

Germán Morales-España[†]

[†]Delft University of Technology, Delft, The Netherlands

PowerWeb February 2016

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Energy-Based Scheduling vs. Operation
- Infeasible Energy Delivery
- Power Scheduling: The Power-based UC

3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Present in all day-ahead & intra-day markets around the world

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): considered as the optimal tool for short-term energy scheduling

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): considered as the optimal tool for short-term energy scheduling
- Wind & Solar introduce uncertainty ⇒ more difficult planning:
 - Reserve-Based deterministic UC
 - Stochastic or Robust UCs (endogenous reserves)

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): considered as the optimal tool for short-term energy scheduling
- Wind & Solar introduce uncertainty ⇒ more difficult planning:
 - Reserve-Based deterministic UC
 - Stochastic or Robust UCs (endogenous reserves)
- Optimal quantity of reserves must be scheduled
 - providing flexibility for real-time operation
 - \blacksquare \Rightarrow the system can face real-time uncertainty

- Present in all day-ahead & intra-day markets around the world
- Unit Commitment (UC): considered as the optimal tool for short-term energy scheduling

■ Wind & Solar introduce uncertainty ⇒ more difficult planning:

- Reserve-Based deterministic UC
- Stochastic or Robust UCs (endogenous reserves)
- Optimal quantity of reserves must be scheduled
 - providing flexibility for real-time operation
 - \blacksquare \Rightarrow the system can face real-time uncertainty

Underlying assumption:

UC generation schedule can always deliver what it promises

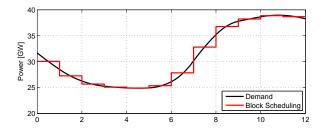
Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

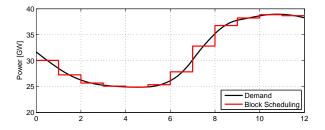
Energy-Based Scheduling vs. Operation

- Infeasible Energy Delivery
- Power Scheduling: The Power-based UC


3 Case Studies: "Ideal" Stochastic UC

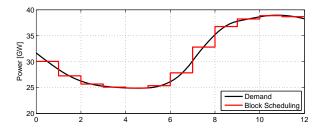
4 Conclusions

Energy-Based Scheduling: what is scheduled


Energy blocks satisfying hourly demand:

Energy-Based Scheduling: what is scheduled

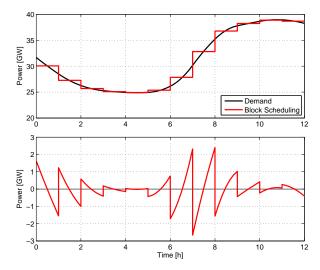
Energy blocks satisfying hourly demand:



Generators try to follow the stepwise energy profile Generation-Demand balance is needed in real time

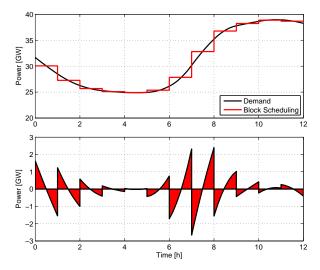
Energy-Based Scheduling: what is scheduled

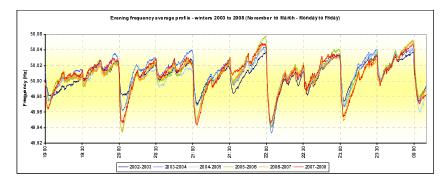
Energy blocks satisfying hourly demand:



Generators try to follow the stepwise energy profile Generation-Demand balance is needed in real time $\downarrow\downarrow$ reserves provide the difference

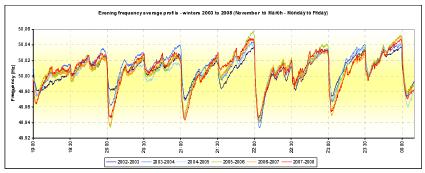
Energy-Based Scheduling: Deployment


Reserve deployment and impact on frequency



Energy-Based Scheduling: Deployment

Reserve deployment and impact on frequency

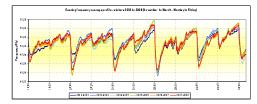


Energy-Based Scheduling: Impact on Frequency Frequency deviations in the European grid: years 2003-2008¹

¹ENTSO-e, "Frequency Quality Investigation, excerpt of the final report," UCTE AD-HOC, Report, Aug. 2008 ²ENTSO-e and Eurelectric, "Deterministic Frequency Deviations: 2nd stage impact analysis," ENTSO-e, Report, Dec. 2012

Energy-Based Scheduling: Impact on Frequency Frequency deviations in the European grid: years 2003-2008¹

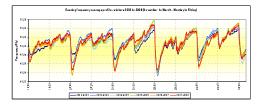
- Frequency deviations equivalent to 2GW generation outages.
- Many times everyday and increasing²


• excessive use of **primary** & **secondary** reserves $\Rightarrow \uparrow$ & \downarrow flex.

¹ENTSO-e, "Frequency Quality Investigation, excerpt of the final report," UCTE AD-HOC, Report, Aug. 2008 ²ENTSO-e and Eurelectric, "Deterministic Frequency Deviations: 2nd stage impact analysis," ENTSO-e, Report, Dec. 012

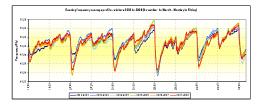
TUDelft

Energy-Based Scheduling: Impact on Frequency


- As power systems change, the traditional Energy Scheduling paradigm must change
 - Freq. deviations increases as wind & solar penetration increases

Energy-Based Scheduling: Impact on Frequency

- As power systems change, the traditional Energy Scheduling paradigm must change
 - Freq. deviations increases as wind & solar penetration increases



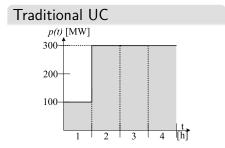
Microgrids & smart grids could face worse consequences (\$\phi\$ inertia)

Energy-Based Scheduling: Impact on Frequency

- As power systems change, the traditional Energy Scheduling paradigm must change
 - Freq. deviations increases as wind & solar penetration increases

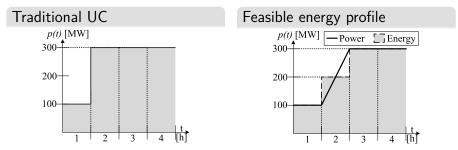
Microgrids & smart grids could face worse consequences (↓ inertia)
 Even DC systems might face similar problems (in voltage)

Outline

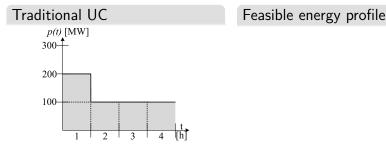

1 Introduction

2 Assumptions: Dealing with "Certainty"

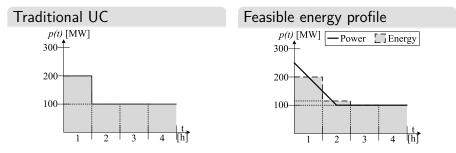
- Energy-Based Scheduling vs. Operation
- Infeasible Energy Delivery
- Power Scheduling: The Power-based UC
- 3 Case Studies: "Ideal" Stochastic UC


4 Conclusions

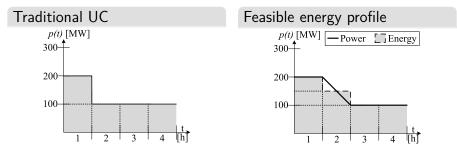
Generation levels are usually considered as energy blocks.


³X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

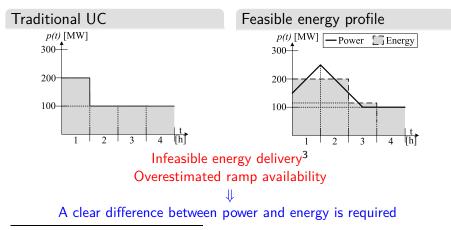
Generation levels are usually considered as energy blocks.


³X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.


³X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.


³X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Generation levels are usually considered as energy blocks.

³X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

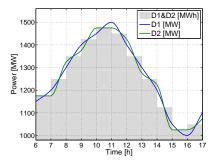
Generation levels are usually considered as energy blocks.

³X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000

Outline

1 Introduction

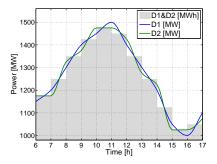
2 Assumptions: Dealing with "Certainty"


- Energy-Based Scheduling vs. Operation
- Infeasible Energy Delivery
- Power Scheduling: The Power-based UC
- 3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

Energy vs. Power Profiles

Demand Example


Demand requirements

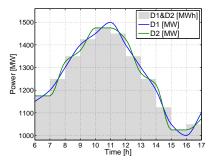
	Hour	D1	D2
Ramp [MW/h]	9-10	50	100
Ramp [MW/h]	10-11	50	0

⁴G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014

Energy vs. Power Profiles

Demand Example

Demand requirements


	Hour	D1	D2
Ramp [MW/h]	9-10	50	100
Ramp [MW/h]	10-11	50	0
Max P [MW]	10-11	1500	1475
Min P [MW]	15-16	1000	1025

Planning 1 **Energy** Profile \Rightarrow cannot guarantee the final power profile⁴

⁴G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

Energy vs. Power Profiles

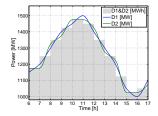
Demand Example

Demand requirements

Hour	D1	D2
9-10	50	100
10-11	50	0
10-11	1500	1475
15-16	1000	1025
	9-10 10-11 10-11	9-10 50 10-11 50 10-11 1500

∜

Planning 1 Energy Profile \Rightarrow cannot guarantee the final power profile⁴ Planning 1 Power Profile \Rightarrow guarantees the unique energy profile³

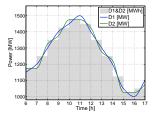

⁴G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

Power Scheduling: Power-Based UC

UC was reformulated for better scheduling $(\downarrow \text{ costs})^{5,6}$

Key features:

Clear distinction: energy vs. power

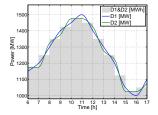

⁵G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁶G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015

Power Scheduling: Power-Based UC

UC was reformulated for better scheduling (\downarrow costs)^{5,6}

- Key features:
 - Clear distinction: energy vs. power
 - Linear piecewise power scheduling
 - Power demand balance
 - Reserve constraints depending on ramp availability


⁵G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

⁶G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015

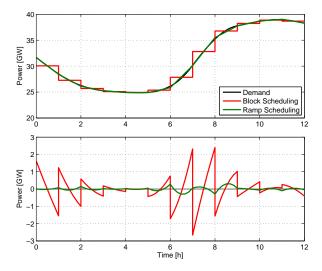
Power Scheduling: Power-Based UC

UC was reformulated for better scheduling (\downarrow costs)^{5,6}

- Key features:
 - Clear distinction: energy vs. power
 - Linear piecewise power scheduling
 - Power demand balance
 - Reserve constraints depending on ramp availability

Challenge:

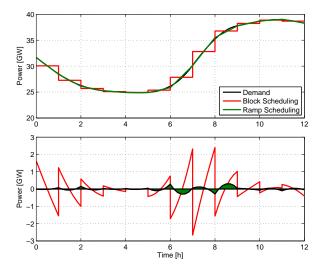
Trade-off: Model detail vs. Computational burden^{6,7}


⁵G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

 $^{^{6}}$ G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015

⁷G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Energy- vs. Power-Based Scheduling


Energy-Based (block, stepwise) vs. Power-Based (ramp, piecewise)

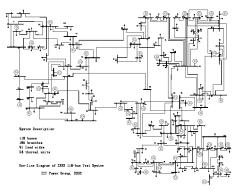
Energy- vs. Power-Based Scheduling

Energy-Based (block, stepwise) vs. Power-Based (ramp, piecewise)

Outline

1 Introduction

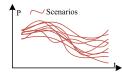
2 Assumptions: Dealing with "Certainty'


- Energy-Based Scheduling vs. Operation
- Infeasible Energy Delivery
- Power Scheduling: The Power-based UC

3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

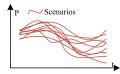
IEEE-118 Bus System



■ 54 thermal units; 118 buses; 186 transmission lines; 91 loads

- + 10 Quick-start units (\sim 10x more expensive)
- 24 hours time span
- 3 wind farms, 20 wind power scenarios

Case Study


- 2 Stochastic UC formulations:
 - **E-UC**: Traditional Energy-based UC
 - P-UC: Power-based UC

Case Study

- 2 Stochastic UC formulations:
 - **E-UC**: Traditional Energy-based UC
 - P-UC: Power-based UC

- All problems solved with Cplex 12.6.0, stop criteria:
 - 0.05% opt. tolerance or 24h time limit

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating "ideal" stochastic UCs

■ by Using in-sample wind power scenarios

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating "ideal" stochastic UCs

- by Using in-sample wind power scenarios
- **5 min** dispatch decisions for all units
- + Quick-start units' commitment decisions
- by solving 5-min network-constrained quick-start UC

Scheduling Stage:

- Obtains hourly commitment decisions for slow-start units
- by solving hourly network-constrained slow-start UCs

Evaluation Stage: Simulating "ideal" stochastic UCs

- by Using in-sample wind power scenarios
- **5 min** dispatch decisions for all units
- + Quick-start units' commitment decisions
- by solving 5-min network-constrained quick-start UC
- Penalizations:
 - Demand-balance violation costs: 10000 \$/MWh
 - Network violation costs: 5000 \$/MWh
 - Negative wind bids: -50 \$/MWh

	Scheduling (hourly)		Real-time dispatch (5-min)	
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3		
P-UC	734.3	5.0		

[†]Commitment + dispatch + penalty costs

In the scheduling stage:

■ Power-based UC seems to be less flexible (↑ Curt)

	Scheduling (hourly)		Real-time dispatch (5-min)	
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
P-UC	734.3	5.0		

[†]Commitment + dispatch + penalty costs

In the scheduling stage:

- Power-based UC seems to be less flexible (
 Curt)
- In the evaluation stage: the E-UC
 - Increased Total Costs by 7.6% and Wind Curt. by 523%

	Scheduling (hourly)		Real-time dispatch (5-min)	
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
P-UC	734.3	5.0	766.1	5.4

[†]Commitment + dispatch + penalty costs

In the scheduling stage:

- Power-based UC seems to be less flexible (
 Curt)
- In the evaluation stage: the E-UC
 - Increased Total Costs by 7.6% and Wind Curt. by 523%

and the P-UC

■ Increased Total Costs by 4.3% and Wind Curt. by 7.4%

	Scheduling (hourly)		Real-time dispatch (5-min)	
	Costs† [k\$]	Curt [%]	Costs† [k\$]	Curt [%]
E-UC	747.3	1.3	804.2	8.1
P-UC	734.3	5.0	766.1	5.4

[†]Commitment + dispatch + penalty costs

In the scheduling stage:

- Power-based UC seems to be less flexible (↑ Curt)
- In the evaluation stage: the E-UC
 - Increased Total Costs by 7.6% and Wind Curt. by 523%
- and the P-UC
 - Increased Total Costs by 4.3% and Wind Curt. by 7.4%
- P-UCs turned out to be more flexible (\downarrow Curt) than E-UC

Outline

1 Introduction

2 Assumptions: Dealing with "Certainty"

- Energy-Based Scheduling vs. Operation
- Infeasible Energy Delivery
- Power Scheduling: The Power-based UC

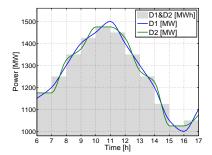
3 Case Studies: "Ideal" Stochastic UC

4 Conclusions

- Not even an "ideal" stochastic energy-based UC
- $\blacksquare \Rightarrow$ using the reserves to deal with known conditions in real-time

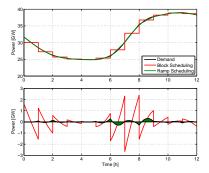
- Not even an "ideal" stochastic energy-based UC
- ⇒ using the reserves to deal with known conditions in real-time
- To achieve an optimal economic operation
 - All predictable events must be scheduled in advance
 - only unforeseen events must be addressed using reserves

- Not even an "ideal" stochastic energy-based UC
- ⇒ using the reserves to deal with known conditions in real-time
- To achieve an optimal economic operation
 - All predictable events must be scheduled in advance
 - only unforeseen events must be addressed using reserves
- Power-Based Scheduling
 - More accurate system representation
 - $\blacksquare \Rightarrow$ better exploitation of unit's flexibility in real-time


- Not even an "ideal" stochastic energy-based UC
- using the reserves to deal with known conditions in real-time
- To achieve an optimal economic operation
 - All predictable events must be scheduled in advance
 - only unforeseen events must be addressed using reserves
- Power-Based Scheduling
 - More accurate system representation
 - \blacksquare \Rightarrow better exploitation of unit's flexibility in real-time
- Efficiency of scheduling approaches must be measured based on ex-post performance, and not ex-ante as usually done
 - by using electrical system models measuring the use of primary, secondary & tertiary reserves

Research Challenge: URSES project

Create markets based on power trajectories:


Providing the right price signals for the system's energy & ramp requirements

Research Challenge: URSES project

- Create markets based on power trajectories:
 - Providing the right price signals for the system's energy & ramp requirements
 - Better following the actual demand
 - Avoiding unnecessary and costly use of reserves
 - Avoiding possibility of gaming: energy vs. reserve markets

Questions

Thank you for your attention

For questions and **possible future collaboration**: g.a.moralesespama@tudelft.nl

For Further Reading

- **ENTSO-**e, "Frequency Quality Investigation, excerpt of the final report," UCTE AD-HOC, Report, Aug. 2008.
- **ENTSO-e** and Eurelectric, "Deterministic Frequency Deviations: 2nd stage impact analysis," ENTSO-e, Report, Dec. 2012.

X. Guan, F. Gao, and A. Svoboda, "Energy delivery capacity and generation scheduling in the deregulated electric power market," *IEEE Transactions on Power Systems*, vol. 15, no. 4, pp. 1275–1280, Nov. 2000.

- G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014.
- G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," en, *OR Spectrum*, pp. 1–22, May 2015.
- G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013.

