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 Part 1

* Motivation: Why the energy industry needs weather and cllmate i
information? 7

 Part 2

» System Adequacy: Climate variability vs. heat decarbonisation
scenarios

* Possible heat pump profiles
* Possible decarbonisation scenarios
 Part 3

* Potential impacts of climate change on European power
systems

* Power system vs climate uncertainty
* Impacts on Demand, Wind power, Solar PV

* £ e
& P s* T S,
</ :’,:f;f?, % i f

* Highlighting some newly developed datasets from
the CLEARHEADS project.



- % University of University of

MOTIVATION BRISTOL % Reading

- To meet government targets power systems are becoming increasingly
weather-dependent

* This weather-dependence results in increased power system variability
on numerous timescales from seconds-decades

* The meteorological conditions associated with this variability must be

understood for reliable power system operation
' Rz
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METEOROLOGICAL DATA?

o Energy systems are rapidly changing to meet climate mitigation targets, so metered
data contains large trends, and past years data are less useful.

o Climate variability is extremely important to account for.

e Year to year variations in weather can cause large differences in power system
modelling results.

GB: since 2010 wind surges, coal collapses and fossil fuel use nearly halves
Great Britain's electrical generation by fuel type %
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Chart: Dr Grant Wilson, University of Birmingham * Source: Elexon and National Grid * Get the data * Created with Datawrapper



WHY CAN THE WEATHER DATA BE

USEFUL?

Can we predict
these
components in
advance?

Summer was

bad, will that

happen again
next year?

Does weather
even matter in
the grand
scheme of

April 2014 (10.2 GW)
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What happens
to my
renewables at
peak demand?

What about climate
change?

Wind turbine distributions taken from Drew et al., (2015) https://doi.org/10.3390/resources4010155
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Operational Grid management, plant scheduling Nowcasting &
seconds — days Anticipating extreme weather short range
Trading Maintenance/resource planning Extended range
days — 1 year Longer-term wholesale energy contracts & seasonal
forecasts
Strategic Characterising demand and supply Reanalysis
year — year Impacts of year-year variability & control runs

climate variability

Planning Impacts of climate change Climate model
climate change Trade-off between climate change and energy projections
system change

Extremes Risk and impact of extreme disruptive weather All of the above!
disrupting weather local vs. far afield impacts
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REANALYSIS?

o Reanalysis data: A weather
model which is run including all
past observations. The gaps are
then ‘filled in’ using a technique
called data assimilation to give a
comprehensive gridded record of
weather data for many years.

The ERAS and MERRAZ2
meteorological reanalysis
datasets contain >40 year
reconstructions of hourly
gridded weather variables at
multiple heights through the
atmosphere.
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credit: Copernicus ECMWF
https://www.youtube.com/watch?v=FAGobvUGI24
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* European wind drought currently in progress.

* Lowest wind period in the last 60 years. - A challenge when you come to
rely heavily on renewable generation!

100m Wind Speed Rank (1961-2020 Climatology)

APR 2021 - SEP 2021
1961-2020 Climatology ERAS5 Reanalysis

Source: World Climate Service twitter
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IMPACTS OF HEAT
DECARBONISATION ON SYSTEM

"ADEQUACY CONSIDERING
INCREASED METEOROLOGICAL
SENSITIVITY
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: Evolution of
Weather - it’s not the demand-weather

Same every year. sensitivity

What is happening in the 2025 capacity market?

Method of
estimating heat
demand growth

uncertain

Heat pump
profile
uncertainty
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* Key interaction with energy modellers to make reanalysis data inputs as
useful as we possibly can:

Weather data Renewable Dispatchable

(reanalysis) portfolio generation X
. l | l
Hlst((;er;:l;r}lfgtem | Linear sl Ni[, dzmaf[ld ! System margin |, Caculate LOLE
E G regression Bl C;S Z/=X+Y-D and ACTS
> Y NDM —

* Time collapsed system adequacy model with key assumptions:

* 1 million heat pumps installed a year, directly replacing existing gas
demand (1.75KW additional peak demand per pump installed)

* Dispatchable generation retired based on current projections

12
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* Key interaction with energy modellers to make reanalysis data inputs as
useful as we possibly can
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- Gridded weather and climate data can be converted into energy variables using
statistical or physical models

* Fix the power system setup (e.g. 2020 levels of demand/wind/solar, or 2030
expectations of demand/wind/solar) and pass 40 years of reanalysis through the
demand/wind/solar models

Hourly gridded meteorological variables

2m 100m wind 2m Surface Shortwave
Temperature speed Temperature Radiation
" ™ N 54
_ Physical wind Empirical solar
regression model power model power model

Hourly national Energy variables

Data available from the Reading Research Data Repository: https://researchdata.reading.ac.uk/
see: Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types 14

for detailed methods https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.1858
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* Linear regression with Lasso Regularisation

* An optimal correlation threshold is chosen to define useful variables in the demand
model to prevent overfitting and maximise out of sample performance.

- Many weather variables were trialed for this process.
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* Wind power models are based on the non-linear relationship between wind speed

and wind power

 Gridded reanalysis wind speeds are required at turbine hub-height (58.9m onshore

OWER MODELLING
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85.5m offshore) Interpolate these from model levels (2m, 10m, 50m).

* The locations of wind turbines are known, so the gridded wind power output can be
calculated, or aggregated over onshore and offshore regions.

1.0
—— NG offshore

—— NG onshore
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0.0

See Deakin et al.

10 15 20 25
100m wind speed (ms™1)

, (2021) for further details
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- Empirical model based on surface shortwave radiation and 2m temperatures in each
grid box.

- Can be population weighted as a proxy for where the solar panels are installed.

relative efficiency factor Irradiance
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See Bloomfield et al., (2020) and Bett and Thornton (2016) for further details
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See Deakin et al., (2021) for further details
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(a) Demand, D

See Deakin et al., (2021) for further details
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Heat pump profiles
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See Deakin et al., (2021) for further details
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Additional Capacity to Secure,
w.r.t. Long-Term Climate, GW
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See Deakin et al., (2021) for further details
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See Deakin et al., (2021) for further details
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See Deakin et al., (2021) for further details



Hourly historical and near-future weather
and climate variables for energy system
modelling

Hannah C. Bloomfield et al.

Data sets

ERAS derived time series of European aggregated surface weather variables, wind power, and sola
power capacity factors: hourly data from 1950-2020.

Bloomfield, H. C. and Brayshaw., D. J.

https://researchdata.reading.ac.uk/id/eprint/321

Future climate projections of surface weather variables, wind power, and solar power capacity
factors across North-West Europe

Bloomfield., H. C., Brayshaw., D. .

https://researchdata.reading.ac.uk/id/eprint/331
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Hourly historical and near-future weather

and climate variables for energy system

modelling

Hannah C. Bloomfield et al.

Data sets

ERAS derived time series of European aggregated surface weather variables, wind power, and solar
power capacity factors: hourly data from 1950-2020.

Bloomfield, H. C. and Brayshaw., D. J.
https://researchdata.reading.ac.uk/id/eprint/321

Future climate projections of surface weather variables, wind power, and solar power capacity

factors across North-West Europe
Bloomfield., H. C., Brayshaw., D. |.
https://researchdata.reading.ac.uk/id/eprint/331

Proposed Celtic
Interconnector

Wider European Systems

The capacity value of inter-
connectors depends on the

coincidence of stress events in
interconnected regions, which
Is partially driven by the
weather within those regions
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System adequacy considered in context of transition to electrified heat.

30-year demand and wind power generation hindcast from weather
reanalysis data.

 GB temperature-demand sensitivity could increase by 54% in just 4
years with the addition of heat pumps.

* Electric heat demand growth uncertainty doubles variability in
additional capacity to secure.

26
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POTENTIAL IMPACTS OF CLIMATE
CHANGE ON EUROPEAN POWER
SYSTEMS
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* Data from the European Climate Energy Mixes (ECEM) project
* 7 Different climate models: to understand the impact of climate change

- 5 different energy scenarios: to understand the impact of energy policy
choice
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STEM CHOICE

Full Year

Small and Local

23007 Big & Market

e-Highway
-~ 100% RES 2050
5000 —— Fossil and Nuclear .
— scenarios

Large Scale Renewables

4500 A
Each set of coloured lines is all the climate
model simulations for a particular energy
scenario

4000 -

Total Load (TWh)

3500 A

3000 A

2020 2030 2040 2050 2060
Year

Future power system uncertainty is dominated by the energy policy choice.

But that doesn’t mean that the climate uncertainty isn’t important...

Once a policy choice is made (i.e. if we pick one of the scenarios above) the

impacts of climate change can be seen clearly...
29
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* By 2050 National power systems may be subject to considerable impacts from
climate change

* The impact of climate change on demand is robust to the choice of RCM. A larger
impact is seen in the higher RCP scenario

* The impact of inter-annual climate variability is relatively small

Percentage change: Europe Demand
mean[2045-2065] - mean [1980-2000] ,. B RCP4.5

—_ RCP8.5
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Mean climate &

model -4 -

response . . : . .

Annual Winter Spring Summer Autumn
Bootstrapped

range for each choice of years choice of years

uncertainty ‘ small impact of + large impact of
climate model

30
see Bloomfield et al., (2020)



https://doi.org/10.1016/j.renene.2020.09.125
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Percentage change:

Sweden mean[2045-2065] - mean [1980-2000]
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I RCP4.5

Percentage Change (%)
Percentage Change (%)

Percentage Change (%)
Percentage Change (%)

Spr'ing Sum'mer Autt'Jmn

Not All European
countries have the
same response, as

their Heating v.s.
cooling
requirements
change

31
see Bloomfield et al., (2020)
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* The impact of climate change on wind power generation is very sensitive to the
choice of climate model, and the choice of years used to compute the results

Europe Wind Power
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Outlier models can skew multi-model:mean resultS ... Bloomfield et al.. (2020}
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* The impact of climate change on solar power generation is sensitive to the
choice of RCM. It is less sensitive to the choice of years used to compute the
results in most regions (lots of uncertainty over N.Europe)

2o Europe Solar Power
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see Bloomfield et al., (2630)
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CLIMATE CHANGE IMPACTS G e of g pniversio
ON SYSTEM DEVELOPMENT

* Increasing the amount of wind power and solar power installed on the

system increases the sensitivity of the European power system to climate
change.

* The relatively certain response of demand becomes more complex due

to the large sensitivity of WP and SP projections to model choice and
|AV.

2016 Demand-Net-Renewables 2050 Demand-Net-Renewables
5. o :
S oy M g " * | l
s e LTS SR SR NI N R ST S
NIl NN U ""*”I*”'m** il
2 UL be * 3 * | » } } | ‘ |
s } 5 + } }
a ——75- }

_ 34

Models agree on the sign of the change Models no longer agree

34
see Bloomfield et al., (2020)
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Hourly historical and near-future weather
and climate variables for energy system
modelling

Hannah C. Bloomfield et al.

Data sets

ERAS derived time series of European aggregated surface weather variables, wind power, and solar
power capacity factors: hourly data from 1950-2020.

Bloomfield, H. C. and Brayshaw., D. .

https://researchdata.reading.ac.uk/id/eprint/321

Future climate projections of surface weather variables, wind power, and solar power capacity
factors across North-West Europe

Bloomfield., H. C., Brayshaw., D. J.

https://researchdata.reading.ac.uk/id/eprint/331

The Big Freeze 1963 50 2003 Heatwave
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MISMATCH IN DELIVERY VS P&
REQUIREMENTS

reanalysis anomaly
assimilation data hindcast
optimisation
EU-ETS TR

cost-effective

dispatch

Wow, great! Please

. putit all in here!
Here is the data

you asked for

Climate scientist Energy modeller
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SUMMARY PART 2 A8 BRI TOL B Reading

1. Future power system uncertainty is dominated by the choice of energy pathway.
However, there is significant sensitivity still present due to the choice of climate
model, RCP scenario, and the impacts of inter-annual variability.

2. The response of European demand to climate change is consistent with a
reduction in heating-induced demand and increases in cooling-induced demand

3. The response of European WP/SP generation to climate change is much more
uncertain, models do not generally agree on the sign of the change and the
changes are sensitive to the choice of period used

4. More thorough consideration of climate uncertainty is therefore needed
within energy policy choices as it is likely to be of great importance for
robust future power system planning and design.

5. There is lots more work to do in this area! Collaboration with energy/power
system modellers is particularly important for us to tailor our analysis/datasets.

Access to data is a huge challenge!
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