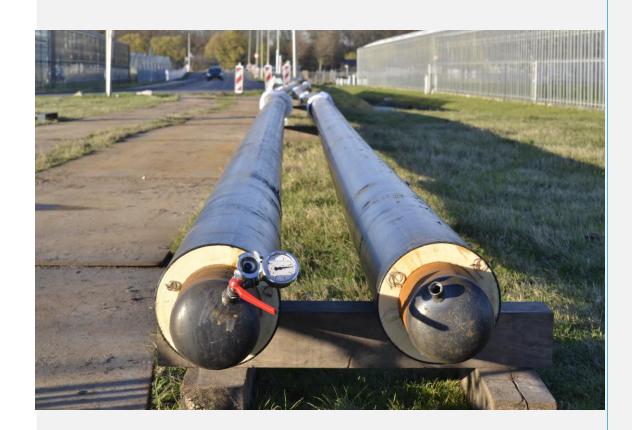

WarmingUp 2A: How low can you go?

Online TUDelft Urban Energy Lecture April 13th, 2022 <u>Ivo.Pothof@deltares.nl</u>

Overview

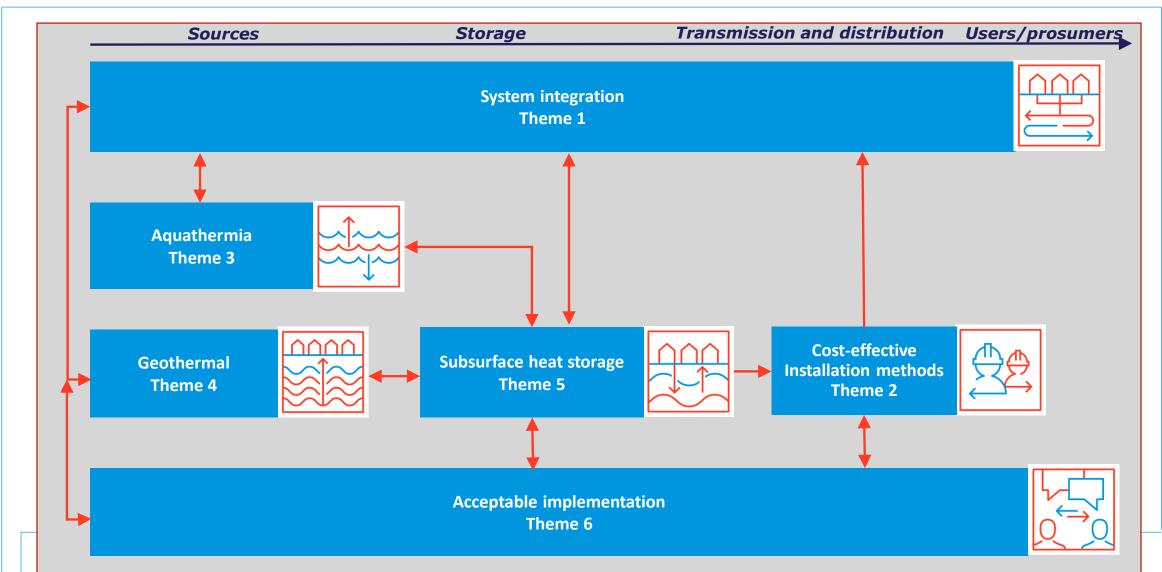
- Intro WarmingUP national R&D programme
- Project 2A How low can you go?



WARMING^{UP}

Grand challenge

• NL: district heating revolution


- from 340.000 to 1.1 million dwellings in 2030
- Decarbonise district heating via aquathermia, geothermal energy, waste heat and storage
 - 70% CO₂-reduction in 2030 compared to NG-boiler
- Acceptable and affordable system and process innovations in supply chain.
 - 1,5% efficiency gain per year

Coherence

Heating/cooling demand

39 partners

- DH companies
- Network operators
- Water sector
- Subsurface stakeholders
- Municipalities
- Provinces
- R&D organisations

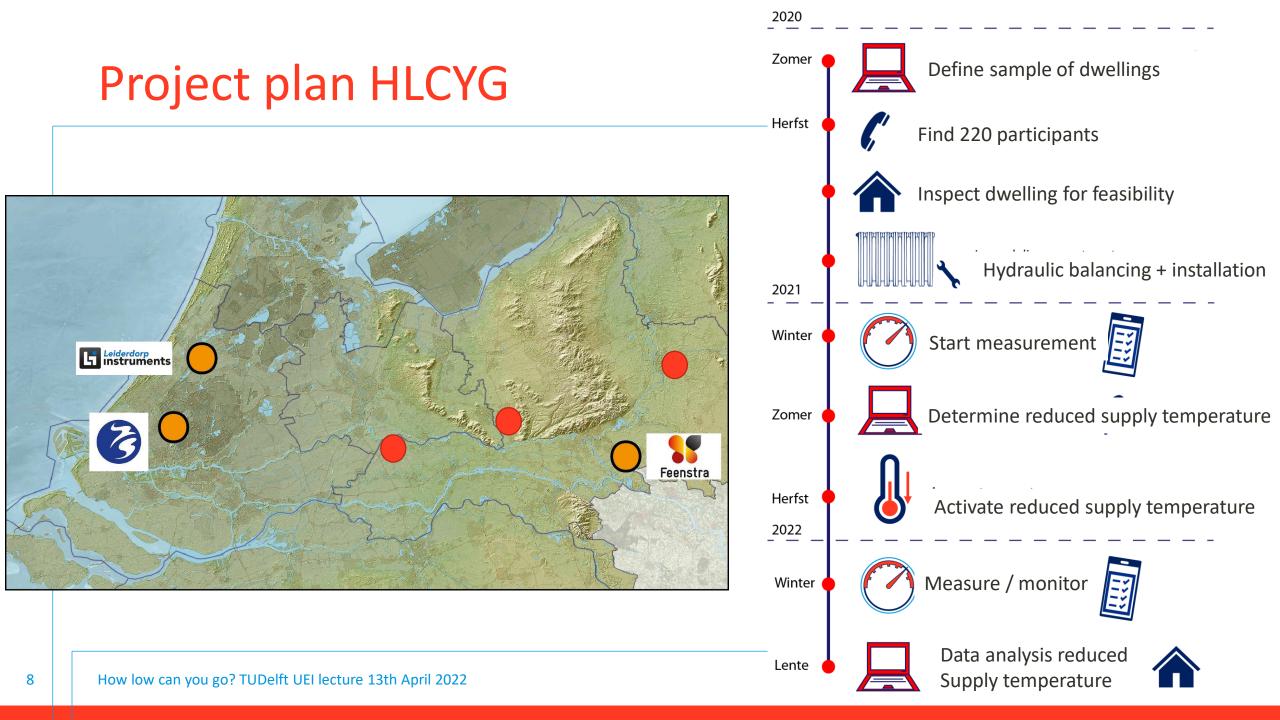
14 ass. partners

- Network organisations
- Contractors
- Consultants

Innovation plan

- 6 themes, 32 projects, €18,9 M
- 5 PhD's + 1 PDEng, 100+ experts
- Duration 3 years, start 1-1-2020

Funding


- 25% co-funding private and public organisations
- 25% co-funding from R&D organisations
- 50% subsidy from Min. EZK/BZK, grant TEUE819001

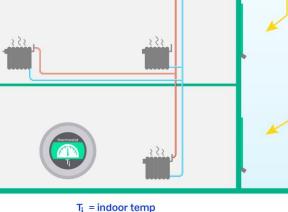
How low can you go?

- Hypothesis: many existing heating systems are oversized.
- Motivation
 - Renewable sources and heat pumps like low temperatures
 - Large potential saving to decarbonize heat supply
 - 5 mln existing dwellings x 5 − 10 k€ = 25 − 50 bln.€
 - Very little experimental evidence on reduced supply temperature
- Large-scale measurement campaign in 200 dwellings
 - Collaboration with installation company Feenstra
 - No modification to buildings
- Which fraction of existing dwellings is LT-ready? (LT means $T_s < 55$ °C)
- How low can we go with supply temperature T_s for space heating?

Contents

WARMINGUP

- Measurement set-up
- Method to determine reduced supply temperature
- Representativity of building sample
- Key results


Gas boiler/Building data

Measurement set-up (1/2)

- Thermostat living room indoor temperature (variable)
- Indoor temperature setpoint (variable)
- Gas consumption (day) ightarrow specific heat demand
- KNMI-data

10

- Ambient Temperature (hour)
- Solar radiation (hour)
- Additional instrumentation near gas boiler
 - Pulse flow meter (10-min)
 - Supply temperature T_s (10-min)
 - Return temperature T_r (10-min)

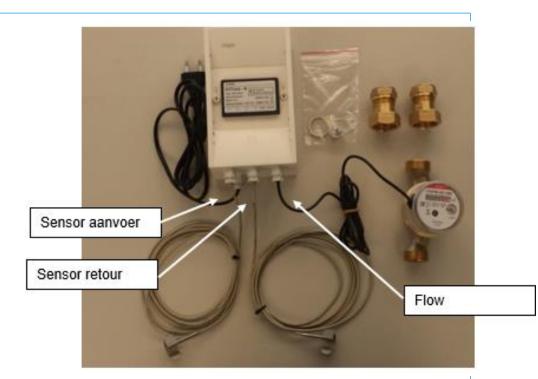
= supply-temperature = return-temperature = ambient temperature

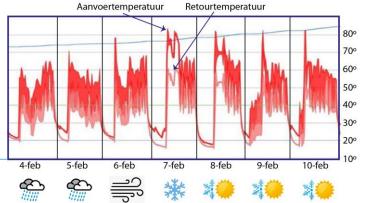
Q_c= solar heat flux

= Mass flow meter (pulse flow meter)

C DT_

Measurement set-up (2/2)



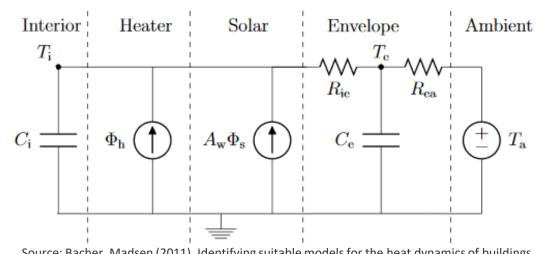

- In dwelling 3 temperature sensors and flow meter
- Temperature difference heating system

 $\Delta T_{sys} = T_s - T_r$

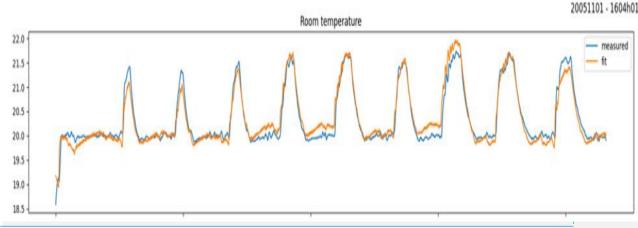
- Temperature difference radiator living room
 - Log-mean ΔT drives heat transfer

$$\Delta T_{LMTD} = \frac{T_s - T_r}{ln\left(\frac{T_s - T_i}{T_r - T_i}\right)}$$

Other experimental data

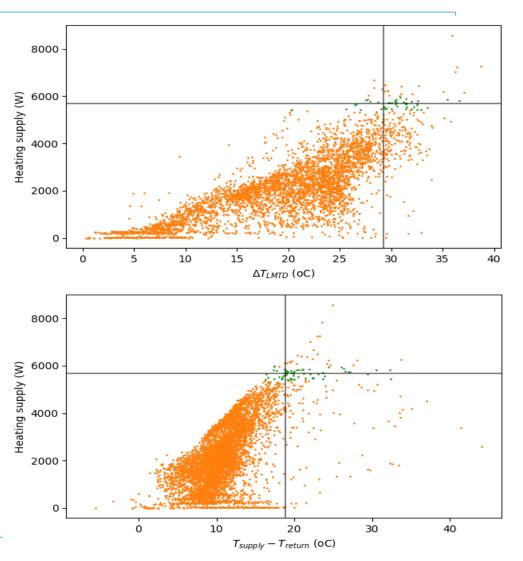


- Site visit by Feenstra staff
 - Collect 70 parameters on thermal building specs
 - Assess suitability for participation in measurement campaign
- Reasons to reject dwellings
 - Residents hesitant to collaborate (due to COVID)
 - No free plug for instrumentation
 - Additional heat sources present (fireplace)
 - Poorly accessible radiators for balancing
 - Underfloor heating poorly accessible
- Annual questionnaire
- Periodic thermal comfort questionnaire during heating season


Thermal model calibration

WARMINGUP

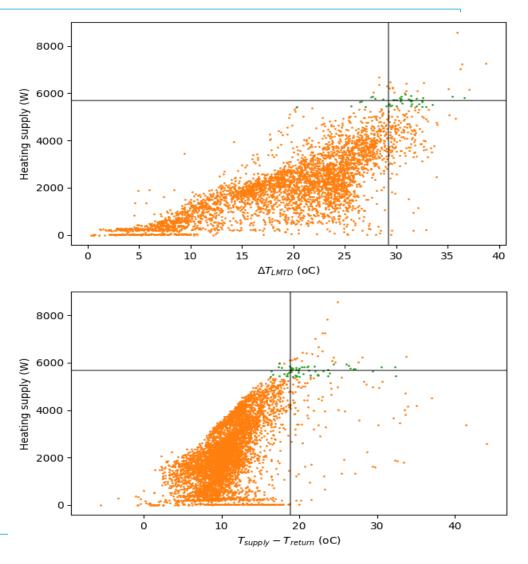
- Lumped model (5 parameters)
 - Heat flow indoor to building envelope (1)
 - Heat flow envelope to outside (2)
 - Solar radiation through windows (3)
 - Total heat supply from radiators
 - Heat capacity living room (4)
 - Heat capacity building envelope (5)
 - Indoor temperature predicted
 - So called 2R-2C model
- Model calibrated to 2 cold 10-day periods and verified on 3rd 10-day period
 - Successful calibration in 187 dwellings
 - Insufficient cold periods this winter


Source: Bacher, Madsen (2011), Identifying suitable models for the heat dynamics of buildings, J. Energy and Buildings 43, 1511-1522

Method for reduced design supply temperature

- Design condition: -10 °C ambient, no solar radiation, +20 °C indoor
 - Daily average condition
- Determine design heat demand Q_d (W) from calibrated model
 - Assuming 18 full load hrs on design day
 - See horizontal lines
- Determine ΔT_{LMTD} and ΔT_{sys} to reach Q_d (kW)
 - Select hourly averaged data points around Q_d
 - Determine 25-percentile in radiator ΔT_{LMTD} at Q_{d}
 - Determine 25-percentile in van system ΔT_{svs} at Q_d
 - No assumptions required, fully data-driven method

Determination of reduced design supply temperature



- Given $\Delta T_{LMTD,d}$ and $\Delta T_{sys,d}$, reduced design supply temperature

$$T_{s,d} - T_i = \frac{\Delta T_{sys,d}}{1 - e^{-\left(\frac{\Delta T_{sys,d}}{\Delta T_{LMTD,d}}\right)}}$$

$$T_{r,d} = T_{s,d} - \Delta T_{sys,d}$$

• Example dwelling: $T_{s,d} = 59.7 \text{ °C}; T_{r,d} = 40.8 \text{ °C}$

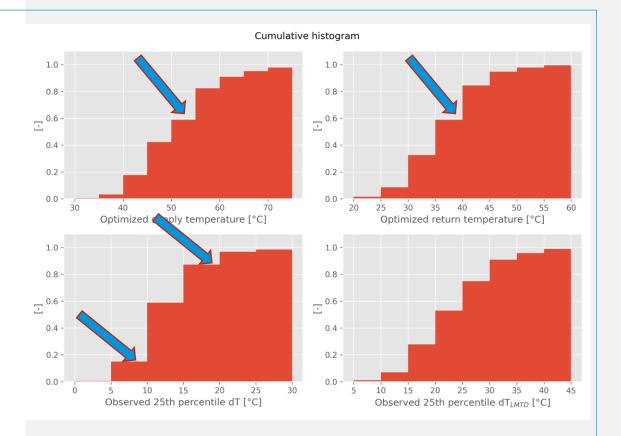
Is our building sample representative? (1/2)

Period	Detached	Corner	Terraced	Apartement	Total
After 1991	7/8	11/10	17/16	9/12	44/46
1974–1991	6/5	20/13	25/21	14/14	65/53
Before 1974	19/16	28/24	32/28	32/53	111/121
Total	32/29	59/47	74/65	55/79	220/220

• Apartements underrepresented

• Distribution over construction periods reasonably close

Specific heat demand representative? (2/2)

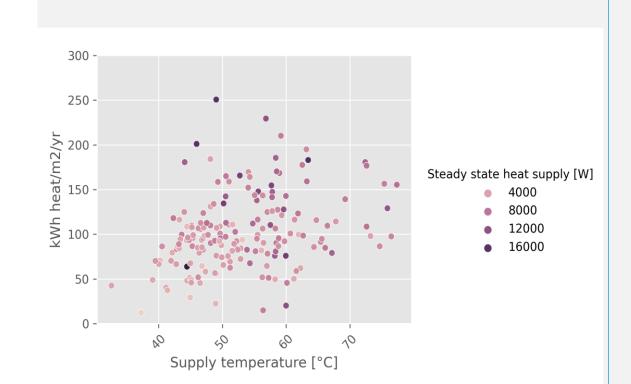

Туре	Construction Period	Specific heat demand SH. Source: SDE (PNH), CBS (kWh/m ² /yr)	Specific heat demand in sample (kWh/m ² /yr)	•
Single family	After 1991	54	105	
	1974–1991	75	109	
	Before 1974	97	93	•
Apartement	After 1991	45	92	
	1974–1991	70	100	•
	Before 1974	92	105	

- Our sample has larger Spec. Heat demand than average
- Specific heat demand is based on 2021 data
 - KNMI De Bilt 2804 °C*days
 - KNMI Deelen 2976 °C*days
 - +/- 150 °C*days colder than average
- Average construction year is 1998 in category "After 1991"
- Reasonably representative sample

Key results for design condition

WARMINGUP

- In 60% buildings $T_s < 55$ °C (LT-ready)
 - In 80% buildings $T_s < 60 \text{ °C}$
 - In 95% buildings $T_s < 70$ °C
- In 60% woningen: $T_r < 40 \degree C$
- In 70% woningen: 10 °C < $T_s T_r < 20$ °C
- Only 15% with $T_s T_r > 20$ °C


Which 60% of buildings is LT-ready?

- Correlations show that T_s NOT related to:
 - Construction period
 - Building type
 - Specific demand space heating

• To do

• Correlate dimensionless radiator capacity $(Q_d / Q_{installed})$ or oversizing factor to reduced design supply temperature

WARMINGUP

Further research

- Extend monitoring campaign to next winter due to mild winter
 - Assess thermal comfort experience in cold ambient conditions
- Quantify minimum supply and return temperature at part-load conditions
- Direct gas savings due to reduced supply temperature
 - Ongoing project with HvA
- 200 calibrated building models
 - Explore flexibility potential during heating season using available thermal mass

Take-away messages

- "Meten is weten" (measure to understand)
- LT (<55°C)-heating requires peak shaving operation
- 60% building stock NL is LT-ready
- Acknowledgements
 - Max Coenen, Lieke vd Most, Martijn Smeulers, Radha Ramoutar, Andrea Forzoni, Tjerk Vreeken, Feenstra BV
- <u>Ivo.Pothof@deltares.nl</u>

