

AUTONOMOUS ENERGY SYSTEM DESIGN PRINCIPLES

16.09.2021

TODAY'S LECTURE

- Project presentation
- General system overview
- Design process: background, challenges and outcome
- Green Village system specifics

AUTONOMOUS ENERGY SYSTEM PROJECT

- Fully self-sufficient energy system
- Generation, storage and supply of 100% renewable energy
- Battery Hydrogen hybrid
- Solar power only source of energy for current system
 - Adding other RES highly feasible
- Phase 1 demonstration

DESIGN BACKGROUND

- Hydrogen storage
 - High storage capacity
 - Location independent
 - Low resource use
 - Poor round-trip efficiency
 - Small battery needed for short-term balancing
- Built environment design anchor: yearly consumption

AUTONOMOUS ENERGY SYSTEM OVERVIEW

AUTONOMOUS ENERGY SYSTEM OVERVIEW

DESIGN BACKGROUND AND CHALLENGES

- For a given yearly consumption:
 - How to determine size of components?
 - PV, electrolyser, fuel cell, battery
 - How much storage is needed?
- Electrolyser and battery interaction with PV
 - When should the electrolyser run? For how long?

SIMULATION BACKGROUND

- Input
 - EU PVGIS PV data for the Netherlands, 2005-2016
 - Generalized domestic consumption profile
- Desired output
 - Hydrogen storage capacity
 - Component capacities fuel cell, electrolyser, PV, battery

Generic domestic consumption profile

SIMULATION PROCESS

- Minute-by-minute decision making
 - PV input
 - User consumption
 - Battery SOC
 - Dates / time of year
- Parameters controlled
 - Is the electrolyser running? Turn on/off?
 - Is the fuel cell running? Turn on/off?
- Battery balances sources and sinks
- Successful when hydrogen never runs out

SIMULATION LEARNINGS

- Everything is connected
 - Electrolyser capacity tied to buffer size
 - Buffer size tied to user consumption
 - Large battery adds stability
 - Large PV also adds stability
 - Only Fuel Cell remains flexible
- Conclusion: Full system decided by solar availability and user consumption
 - Note: Adding a car, electric or H2, requires additional capacity

SIMULATION LEARNINGS

- Rough control parameters determined
- Electrolyser runs from beginning of March to mid-October
 - On and off determined by battery SOC
 - Using prediction can open up the production period and optimize utilization
- Fuel cell always available
 - Also controlled by battery SOC
 - ...but mostly only runs from Oct to March anyway

SIMULATION LEARNINGS

- Harvesting "excess" solar energy is difficult
 - Adding more electrolyser power is easy, but...
 - Adding a larger battery is also easy, but...
 - Do we adapt storage to PV, or PV to storage?
- Improvements
 - Predictive control can likely improve utilization
 - Sell from battery during off-peak hours
- Solar availability from year to year stable, but does vary

GREEN VILLAGE SYSTEM

GREEN VILLAGE SYSTEM SPECIFICS

- System remains grid connected
- Heat vented to ambient
 - Measured and logged for performance evaluation
 - Possible future upgrade: connect to TGV heat grid
- Control system under evaluation
 - Node-RED, OpenEMS, Enapter proprietary
- All data logged in TGV data platform
 - Energy generation, hydrogen buffer status, battery charge, etc.
 - Detailed consumption figures left out for privacy reasons

REFERENCE FIGURES

TGV System		Reference	
User electricity consumption	2.200 kWh/year	Apartment Town house Detached house	2.070 kWh/year 3.100 kWh/year 4.100 kWh/year
Battery	14 kWh	Tesla battery	100 kWh
Hydrogen capacity	60 kg	Hydrogen car tank capacity	~ 5 kg
PV System	6 kWp	Hydrogen energy content * 60 kg	33.3 kWh/kg 2000 kWh
PV System yearly yield	5.900 kWh/year	Hydrogen fuel cell energy contents (45% eff.) * 60 kg	15 kWh/kg 900 kWh

EXPECTED LEARNINGS

- Were the simulations correct?
 - Prediction: the hydrogen storage is oversized
- What did we miss unknowns/errors in design process?
- Where to find points for optimization?
 - Efficiency
 - System cost

AUTONOMOUS ENERGY SYSTEM DESIGN PRINCIPLES

16.09.2021

