TU Delft PowerWeb Institute & TU Delft Urban Energy

Propelling the Evolution of Smart Grids and Buildings

Amsterdam March 18th, 2021

A Kropaarstraat 12 1032 LA Amsterdam The Netherlands **T** + 31 (0)20 737 1628

info@spectral.energy

W www.spectral.energy

About us

Milan Milinković

Smart-Grid Architect

Dmitry Surugin

Smart Building Engineer

Agenda

- » Energy transition. Smart grids and smart buildings
- » Spectral projects & innovative solutions: smart microgrids, buildings and energy assets
- » Smart Energy Control Systems (SEC)
- » Smart Building Platform (SBP)
- » SBP & SEC convergence. Local Energy Market Pilot.

Sustainable energy transition structural system changes

Issues with integration of renewables

- » Randomness & intermittency of weather conditions
- » Demand-supply mismatch (peaks & imbalances) / power grid stability issues
- » More renewables → high price volatility, need for good predictions
- » Energy storage & DR for peak-shaving & load shifting (smoothing)

Evolution of the energy sector

OUR FOCUS AREAS

- » Making energy systems smarter & more resource-efficient
 - » Unlocking the values of renewables through flexibility

Quality of life & sustainability

Spectral - dedicated team with a mission

Future where sustainable energy is secured and accessible to all, serving as the supporting pillar of our civilization To build the ICT backbone of our future, sustainable energy system

Sustainable energy transition

Great source for inspiration,

good times to make an impact!

Core Application Areas

Spectral Energy Control Systems

- » Advanced control platform aiming to unify the flexibility across sustainable assets
 - Observability
 - Controllability
 - Abstraction
- » Facilitate asset integration & centralize control
- » Unlock revenues & new value propositions
- » Adapt to various constraints & use cases
- » Unify and (virtually) aggregate assets
 - Scale and enable direct market access

WRedldex

Taking control of renewables

- » Cloud platform that enables (manufacturer-agnostic) plant aggregation
 - Advanced real-time asset monitoring
 - Abstracting the active power control
 - Statistical analysis and KPI tracking
 - Financial calculations and invoicing
- » Cloud (or local) integrations with renewable plants
- » Imbalance price forecast for turn-key solution
- » Wind farms 150 MW onboarded & 100 MW to be added this year
- » Solar parks 300 MW to be added this year

Sometimes Less is Actually More Curtailment service

- » How can curtailment be sustainable?
- » The grid is still catching up with renewables
 Grid congestion issues
- » The intermittency of renewable energy Grid balancing issues
- » Passive balancingSteering plants on the imbalance market
- Active balancingAggregating plants for aFRR provision

Hybrid (RES + ESS) Power Plants United we stand

- » Hybrid power plants making the best of both worlds
 - Flexibility storage allows us to "tame" the intermittent resources
 - Cost synergie sharing infrastructure & extending value propositions
- » Mission-critical control systems with stacked control proposition

- Peak power management and cable pooling
- Provision of balancing services (FCR & aFRR)
- Secondary commercial functions
- Capitalizing on local (renewable) resources
- » Abstracting site constraints and operating requirements on the local level
- » Redundant control and data logging services ensuring high reliability

Hybrid (RES + ESS) Power Plants

Hartel II - 10 MW Battery System

Hybrid (RES + ESS) Power Plants

Hellegatsplein - Mobile Battery Station

Hybrid (RES + ESS) Power Plants

Rhino - 2 x 6 MW Battery System

SECS Monitoring Platform

Smart Community Platform Don't forget about the little guy

- » Smart-grid solutions propelling the evolution of energy positive districts
 - Source energy from your neighbors & support local economy
 - Increase efficiency and reduce transportation losses
 - Reduce grid dependency and help balance the grid
- » If it was just a simple matter of scaling...
- » Local flexibility to the rescue
 - Electric Vehicles & Energy Storage
 - Renewables Resources
 - Heating Systems
- » Empower local prosumers to take an active role in the energy transition

Smart Community Platform

Don't forget about the little guy

Virtual Power Plants Strength is in numbers

- » Proving a concept is definitely fun, but it is not sufficient
- » Virtual Power Plants regroup your forces & unify the potential
- » Clustering is the way to go:
 - Reduce dependencies
 - Improve predictability
 - Optimize your fleet

There is strength in numbers, but organizing those numbers is one of the great challenges.

John C. Mather

» Scalability - the devil is in the details...

Unlock the Power of Data Dealing with Uncertainty

- » Data-driven modelling & machine learning applications in smart-grids
 - Modelling the assets and their limitations
 - Promised vs. delivered and KPI tracking
 - Improving forecasts and balancing
 - Optimizing operation and planning ahead
 - Exchange knowledge between projects
- » Testing has never been easier
 - Digital twin help us model the behavior of complex systems
 - Predictive Twin estimate the future state of those systems
 - Digital Playground our actions have no consequences

SECS Recap

Renewables on steroids

- » Take control of renewables
 - Facilitate integration
 - Abstract the control
- » Harvest the flexibility
 - Unlock the value of flexibility
- Push the grid to its limits
 - Lift the constraints
 - Optimize the operation
 - Support the grid

What are the next steps?

Why switching to renewables is not sufficient?

building energy consumption should be reduced

- » Life-Cycle Assessment (LCA) & Energy Payback Time (EPBT)
- » Population growth followed by load increase
- » 10-40 % losses due to inefficient HVAC control (offsets all the green energy in the Netherlands)

Why is technology in buildings so far behind?

- » Not on the forefront of the user
- » Massive long-term multi-year investment
- » Need for IT/OT hybrid skill set

Old paradigm:

- » Ad-hoc custom control implementation
- » Act only when complaints received
- » Micromanage every little aspect
- » Solve same problem in different sylos

Enabling technologies for smart buildings

"Game-changers" for the industry

Cloud storage & CPU

Cellular infrastructure

Weather APIs

Open protocols

Cheap & customizable hardware

Smart Building Platform

Key features of our software overlay solution

Automotive vs building industry

"Front-glass view"

- » Looking around
- » Processing information
 - » Adjusting actions

What would happen if it reacted post-factum?

What is the value of predictive control for buildings?

Smart Building Platform prerequisites for the automated control

1. Onboarding - collecting building info & HVAC specs, installing gateway & connecting to BMS (as a plugin/overlay on top)

Smart Building Platform prerequisites for the automated control

- Onboarding collecting building info & HVAC specs, installing gateway & connecting to BMS (as a plugin/overlay on top)
- 2. Energy audit & commissioning, installing sensors & energy submeters
- 3. Pulling, processing and storing time-series data, congregating APIs
- 4. Data modelling (creating "building topology" giving context to it), mapping registers, setting up monitoring & alerting

Data modeling & Interoperability

- » Naming convention / taxonomy:
 - "Deep rainforest green" vs RGB
 - » Need for HTML-like unified standard
 - » 100 words for snow / palm define proper "abstraction level"
 - » Data model / ontology:
 - describe points & relationships

Data models, ontologies & taxonomies

BRICK schema, Haystack project, Google digital buildings

Smart Building Platform prerequisites for the automated control

- 1. Onboarding collecting building info & HVAC specs, installing gateway & connecting to BMS (as a plugin/overlay on top)
- 2. Energy audit & commissioning, installing sensors & energy submeters
- 3. Pulling, processing and storing datastreams, congregating APIs
- 4. Data modelling (creating "building topology" giving context to it), mapping registers, setting up monitoring & alerting
- 5. Deploying fault detection & diagnostics, setting up automated functional performance tests (FPTs). Using newly installed sensors for getting reliable feedback from the building.

Fault Detection & Diagnostics

Smart Building Platform

5 stages of active control

- 1. Reactive control: reconfiguring BMS using its existing capabilities. Set up basic control practices, start with three S: setpoints, schedules, sequences.
- 2. Setting up advanced control strategies using the python-based "reactive control toolbox" (ASHRAE GPC 36 Trim & Respond). Dynamically adjusting setpoints every 10 minutes.
- After few weeks: training thermal model & adding predictive control strategies (e.g. "optimal start-up/shut-off time")
- 4. Using "digital twin" for MPC implementing rolling horizon optimization on top of tuned RC-model with day-ahead forecasts, prices, comfort constraints
- 5. Grid-Interactive Efficient Buildings (GEBs) managing load flexibility

Thermal models for building control data driven

Black-box models

Physical processes in real buildings are too complex to be captured

Building Energy Modelling & Performance Simulation

white-box approach

- » 3D-building geometry
- » Typical meteorological data
- » Building constructions
- » Plant/occupancy profiles
- » Internal heat gains
- » Ventilation rates
- » HVAC systems
- » Need for calibration simulations (e.g. data from energy meters, temperature sensors)
- » Need for the runtime operation & optimisation (e.g. coupling E+ with BCVTB)

Thermal models for building control physics-based

White-box models - building performance simulations

The prior knowledge of building is not comprehensive enough

Thermal models for building control physics-based & data driven

Grey-box

Effective to achieve a suitable characterisation of buildings' thermal response of buildings in a short time

ML to tackle the gap between predicted & actual performance

Grey-box building models for MPC

RC-circuits as a core (thermal-electric equivalent)

Electric charge - Temperature (e.g. outdoor, indoor, surfaces, mass)

Voltage - Temperature difference (e.g. outdoor-indoor, supply-indoor, heater-indoor)

Electric current - Heat gains / losses (e.g. solar gains, internal gains from equipments, occupants)

Electrical capacitance - Heat capacity (e.g. of air, of thermal mass)

Electrical resistance - Thermal resistance (constant - walls, windows and variable - valves & dampers)

Grey-box building models for MPC

MPC framework

Grey-box building models for MPC

Moving horizon optimization

SBP - lessons learned

- » Scalability/replicability is a key. Challenge is to design provider-agnostic decoupled standardized system. Data models are crucial.
- » Unlock the data from all sylos, apply analytics, enable synergies
- » Start simple ("three S") with low-hanging fruits, then add complex algorithms based on ROI
- » Train O&M staff on how technology works. They should use it as a helpful tool, rather than fighting it. Not to replace, to improve the process. O → M.
 "FIx an issue" instead of "find an issue".

SBP - lessons learned

- » Make FDDs focused and actionable: no one want "how messed up is my building" report. Avoid false positives. SaaS = selling... a project? a product? an outcome!
- » Safety factor: connectivity loss → soft landing on BMS sequences
- » Provide ever-increasing value, keeping up with the times (e.g. "pandemic mode")
- » It's not enough to think "behind the meter". Aggregate portfolio into Virtual Power Plant (VPP). Respond to grid events & price signals.

(Future) Spectral Tech Ecosystem SBP & SECS convergence

- » Enabling the transition towards a clean and sustainable energy system
 - Flexible Generation taking control and unlocking flexibility
 - Efficient Distribution overcoming the obstacles and decreasing losses
 - Responsive Consumption following the system conditions
- » SECS Platform
 - Extending the generation
 - Optimizing the transmission
- SBP Platform
 - Optimizing the consumption
 - Harvesting (thermal) flexibility
- » Enable the power system to maintain balance during uncertainty
- » Electricity markets are based on supply-driven wholesale models...

(Future) Spectral Tech Ecosystem

SBP & SECS convergence

Atelier - Local Energy Market Pilot

Energy Positive District in Amsterdam

- Local Market Platform
 as a gateway to
 wholesale and
 balancing markets
- Two-way
 communication and
 dynamic pricing
 based on wholesale
 market participation
- Greater transparency and control over energy supply

of PPA's, smart flex contracts, and P2P

energy exchange

- Deployment of local energy services (eg. congestion relief for the DSO)
- Seamless
 integration of new
 customers,
 producers, and
 aggregators

Thank you!

Dmitry V. SuruginSmart Building Engineer

dmitry@spectral.energy +31 (0)6 42 72 38 63

Milan Milinković Smart-Grid Architect

milan@spectral.energy +31 (0)6 34 15 72 38

www.spectral.energy

Questions?

If you have any additional questions you can follow our trusty T Rex

