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AC power systems
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Frequency control
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e Any instantaneous load-generation imbalance results in a
frequency deviation from the nominal one (50-60 Hz)

e Small load changes on a fast time scale are dealt with the
Automatic Generation Control (AGC)
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The three control layers
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e Primary control counteracts initial frequency drop and implemented
via local droop control of turbine governors

e Secondary AGC is centralized and uses integral control to restore

frequency
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Conventional operational strategy

Central control authority
e AGC is implemented with a central regulator

e Frequency deviation w is measured at low-voltage network and
integrated to generate the regulator output signal p

Tp=w

e The incremental contribution of the individual generating
units to the total generation is obtained via participations
factors Ki_1

u,-:—Ki_lp, i=12,...,n



Conventional operational strategy

e The conventional strategy is developed for conventional
generators which have high inertia, hence abrupt changes are
better absorbed by the system, thus easing the task of
frequency restoration

e Renewable generation leads to significant reduction of inertia,
hence to a more volatile network, which challenges existing
control schemes




Distributed control
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An answer to this challenge has leveraged the use of local
controllers that cooperate over a communication network

e Semi-centralized
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Yet, due to security,

robustness and economic concerns, it is

desirable to regulate the frequency without relying on

communication
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Power network

Lossless, network-reduced power system with n generating units

POWER NETWORK
gener. unit 1 gener. unit 2 gener. unit 3
gener. unit 4 gener. unit 5
/ \

gener. unit 6 gener. unit 7 gener. unit 8
generating unit i generating unit j
frequency deviation w; power frequency deviation w;
controll. power inj. u; transmission | controll. power inj. u;
uncontroll. power inj. P* uncontroll. power inj. PJ?‘
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Frequency dynamics

Vij
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0; = wj, Mw; = —Ajw; — Z V;V;B; sin(9,- — HJ) + uj — P,-*
JEN;

Local measurements: w;

e Swing equations
o Us
e w; frequency deviation /
e 0; phase angle deviation
e voltages V; constant
e purely inductive lines
B;j = Bj,'

e mechanical equivalent =-

Energ% function: 1
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Synchronization frequency control

9.,': Wi
M;w; = —Djw; + u; + P,* = Zj B,JE,E_, sin(H,- = 9J)

e Synchronous solution Wi = Wsync
2 PrAD ui

i Di

e Synchronous frequency Wsyne =

Case n =2

Miin = —Diwr + i1 + P — BiE1 By sin(61 — 62)
Mows =  —Dows + un + PZ* — By EEr Sin(eg — 61)

If w1 = ws = Wsyne = const, summing up

0= *(Dl + D2)w:~:ync + up + uz + Plk + PQ*

e Zero frequency deviation 0=>,Pr+>,u
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Optimal frequency restoration

Manifold choices of u7 to achieve
-3 P+ u
i i

. . Optimal frequency restoration
Optimal dispatch problem

Given unknown P, design

minimizeyern Y ; aiUi2 ui(wi)
subject to > P+ ui=0 o
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Fair proportional sharing

a,-u,* = ajuj* Vi,j
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Fully decentralized frequency control

Bus 30% Bus 37

Tipi = wi
up= —pi

e No communication
required

e Frequency regulation
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e Frequency at G1

e Noisy measurements

wi + n;
e Non-zero mean noise 7
e Noise bound 7 = 0.01Hz
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Fully decentralized frequency control
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Leaky integral control
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Leaky integral control
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Leaky integral control
z 100
Tipi= wi+ni—Kipi 2
ui= —p; §
o
~
e Noisy measurements w; + 7;
e Non-zero mean noise 7 0 20 40 60 80
Time (s)

e Noise bound 77 = 0.01Hz

Leaky integral control T; = 0.05s, K; = 0.005 for G3, G5, G6,
G9, G10, K; = 0.01 for the others

Robust frequency regulation (ISS)
Ix(£)I? < Ae™ ¥ ||x(0)|? +~( sup [ln(t)]])?

tERZO
where A\, &,y are positive constants and
x =col(§d — 6", w —w*, p— p*)

measures the deviation from the synchronous solution
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Impact of control parameters

Tuning of the gains K;

Ki =k for G3 G5 G6 G9 G10
K; = 2k for others
T,' =7 = 0.05s

As k N

e Noise-free steady-state frequency
error N

e & /" implies convergence time Y\
e v\, implies RMSE

Increasing gains Kj leads to

S
o

Inverse DC gain k

e reduced accuracy in frequency regulation

e faster response
e increased robustness to noise
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Impact of control parameters

Tuning of the time constants T;

Ki =0.005 for G3 G5 G6 G9 G10 £
K; = 0.01 for the others g
510
TI — T é 0 0.02 0.04 0.06 0.08 0.1
gmxlo]
As T /‘ g 8
~
~ . . . ~ 6
e &4\, implies convergence time * z.
e 7\, implies RMSE o e

Increasing time constants T; leads to
e slower response

e increased robustness to noise
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Tuning recommendations

i
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Convergence time (s) Frequency error (Hz)

Frequency RMSE (Hz)
w s m o

Frequency RMSE (Hz) Convergence time (s)

o 0.002 0.004 0.006 0.008 0.01

0 0.002 0.004 0.006 0.008 0.01

0 0.002 0.004 0.006 0.008 0.01
3
x 10

Inverse DC gain k

e

0 0.02 0.04 0.06 0.08 0.1
%107
0 0.02 0.04 0.06 0.08 0.1

Time constant 7 (s)

Fix ratios between K,-_1 from
generating units operation
costs

* —1
uf = —K; "Wsync

Fix 3, K ! for banded
frequency regulation

ZK > ZD

Fix T; to strike a trade-off
between frequency rejection
rate and noise rejection

T, = &\, and v\,

18 /22



A further comparison
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Robust stability

Proof is Lyapunov-based, using a strict Lyapunov function
W = U(8) — U(6*) = VU(6") (6 — 6%)
1 * * 1 * %
+5W=w) Mw—w)+2(p—p) T(p—p")
+e(VU(0) = VU(5*) " M(w — w*).

u@)=-3 Z,# BijV;V; cos(6; — 6;) potential energy
W with € = 0 is the “shifted” energy function H —|— p' Tp

For sufficiently small ¢, W is strictly decreasing along the
solutions

This allows for quantification of robustness to noise



Conclusions

A fully decentralized stabilizing integral control for achieving robust
noise-rejection, satisfactory steady-state regulation, desirable transient
performance

e These objectives are not aligned and trade-offs must be found

e Tuning guidelines are provided

e Resulting time constants T;/K; compatible with actuator response time
e Low-pass filter compares favourably wrt droop (noise rejection)

Future work
e Lead compensators could improve transient performance
e Extension more accurate physical models
e Impact of topology on the diffusion of noise and scalability
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