Robust decentralized control in power systems

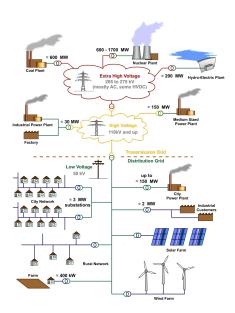
Claudio De Persis

Institute of Engineering and Technology J.C. Willems Center for Systems and Control

PowerWeb Lunch Lecture TU Delft, December 13, 2018

Joint work with Weitenberg (RUG), Jiang-Mallada (Johns Hopkins), Zhao (NREL), Dörfler (ETH)

AC power systems

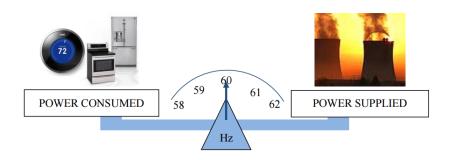


- Power system = network of generation, loads, transmission lines
- Power system control = maintain system security at minimal cost
- Basic security requirement

 keeping frequency

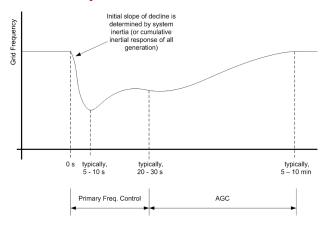
 around nominal value

Frequency control



- Any instantaneous load-generation imbalance results in a frequency deviation from the nominal one (50-60 Hz)
- Small load changes on a fast time scale are dealt with the Automatic Generation Control (AGC)

The three control layers



[figure EPRI]

- Primary control counteracts initial frequency drop and implemented via local droop control of turbine governors
- Secondary AGC is centralized and uses integral control to restore frequency

Conventional operational strategy

Central control authority

- AGC is implemented with a central regulator
- ullet Frequency deviation ω is measured at low-voltage network and integrated to generate the regulator output signal p

$$T\dot{p}=\omega$$

 The incremental contribution of the individual generating units to the total generation is obtained via participations factors K_i⁻¹

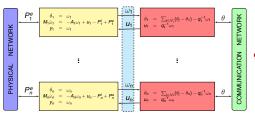
$$u_i = -K_i^{-1} p, \quad i = 1, 2, \dots, n$$

Conventional operational strategy

- The conventional strategy is developed for conventional generators which have high inertia, hence abrupt changes are better absorbed by the system, thus easing the task of frequency restoration
- Renewable generation leads to significant reduction of inertia, hence to a more volatile network, which challenges existing control schemes

Distributed control

An answer to this challenge has leveraged the use of local controllers that cooperate over a communication network



Semi-centralized

$$T\dot{p} = \sum_{i} \omega_{i}, \quad u_{i} = -K_{i}^{-1}p$$

Distributed averaging integral

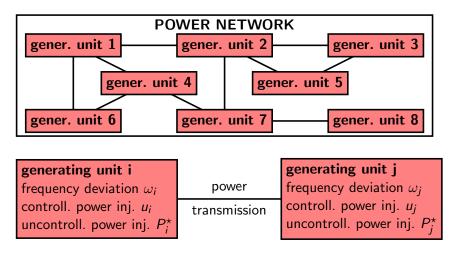
$$T_i \dot{p}_i = \sum_{j \in \mathcal{N}_i^c} (p_j - p_i) + K_i^{-1} \omega_i$$

$$u_i = -K_i^{-1} p_i$$

Yet, due to security, robustness and economic concerns, it is desirable to regulate the frequency without relying on communication

Power network

Lossless, network-reduced power system with *n* generating units



[figure Stegink]

Frequency dynamics

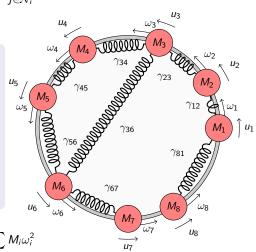
$$\dot{\theta}_i = \omega_i, \qquad M_i \dot{\omega}_i = -A_i \omega_i - \sum_{j \in \mathcal{N}_i} \overbrace{V_i V_j B_{ij}}^{\mathcal{N}} \sin(\theta_i - \theta_j) + u_i - P_i^{\star}$$

Local measurements: ω_i

- Swing equations
- ω_i frequency deviation
- θ_i phase angle deviation
- voltages V_i constant
- purely inductive lines $B_{ii} = B_{ii}$
- mechanical equivalent ⇒

Energy function:

Energy function:
$$H = -\frac{1}{2} \sum_{i \neq j} B_{ij} V_i V_j \cos(\theta_i - \theta_j) + \frac{1}{2} \sum_i M_i \omega_i^2$$



Synchronization frequency control

$$\begin{array}{ll} \dot{\theta}_i = & \omega_i \\ M_i \dot{\omega}_i = & -D_i \omega_i + u_i + P_i^{\star} - \sum_j B_{ij} E_i E_j \sin(\theta_i - \theta_j) \end{array}$$

Synchronous solution

 $\omega_i = \omega_{\rm sync}$

• Synchronous frequency

$$\omega_{\rm sync} = \frac{\sum_{i} P_i^{\star} + \sum_{i} u_i}{\sum_{i} D_i}$$

Case n=2

$$\begin{split} M_1 \dot{\omega}_1 &= -D_1 \omega_1 + u_1 + P_1^{\star} - B_{12} E_1 E_2 \sin(\theta_1 - \theta_2) \\ M_2 \dot{\omega}_2 &= -D_2 \omega_2 + u_2 + P_2^{\star} - B_{21} E_2 E_1 \sin(\theta_2 - \theta_1) \\ \text{If } \omega_1 &= \omega_2 = \omega_{\mathrm{sync}} = \textit{const}, \text{ summing up} \\ 0 &= -(D_1 + D_2) \omega_{\mathrm{sync}} + u_1 + u_2 + P_1^{\star} + P_2^{\star} \end{split}$$

Zero frequency deviation

$$0 = \sum_i P_i^{\star} + \sum_i u_i$$

Optimal frequency restoration

Manifold choices of u_i^* to achieve

$$0 = \sum_{i} P_{i}^{\star} + \sum_{i} u_{i}^{\star}$$

Optimal dispatch problem

minimize_{$$u \in \mathbb{R}^n$$} $\sum_i a_i u_i^2$
subject to $\sum_i P_i^* + \sum_i u_i = 0$

Solution

$$u_i^* = -a_i^{-1} \frac{\sum_i P_i^*}{\sum_i a_i}$$

Fair proportional sharing

$$a_i u_i^{\star} = a_j u_i^{\star} \quad \forall i, j$$

Optimal frequency restoration Given unknown P_i^* , design

$$u_i(\omega_i)$$

that stabilizes the power system model to

$$(\theta_i^{\star},\omega_i^{\star}=0,u_i^{\star})$$

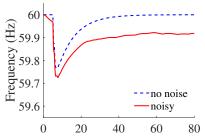
Fully decentralized frequency control

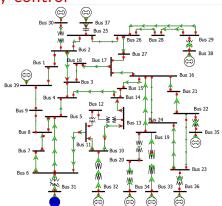
$$T_i \dot{p}_i = \omega_i$$
$$u_i = -p_i$$

- No communication required
- Frequency regulation

$$\omega \to 0$$

IEEE 39-node 'New England' benchmark network



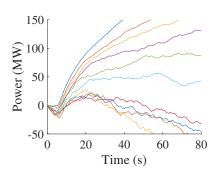


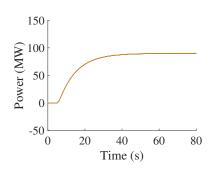
- Frequency at G1
- Noisy measurements $\omega_i + \eta_i$
- Non-zero mean noise η
- Noise bound $\overline{\eta} = 0.01 \mathrm{Hz}$

Fully decentralized frequency control

• No optimality $u \to u(p(0), \theta(0)) \neq u^*$

Active power output of all generators (no noise)





- Unstable behavior
- Steady state

$$0 \approx T_i \dot{p}_i = \omega_i + \eta_i \neq 0 \approx T_i \dot{p}_i = \omega_i + \eta_i$$

Leaky integral control

$$T_i \dot{p}_i = \omega_i - K_i p_i$$
$$u_i = -p_i$$

- No communication required
- Synchronous frequency

60 59.9 59.8 59.6 0 20 40 60 80 Time (s)

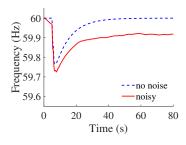
Leaky integral control $T_i=0.05 \mathrm{s},~K_i=0.005$ for G3, G5, G6, G9, G10, $K_i=0.01$

for the others

$$\omega_{\mathsf{sync}} = \frac{\sum_{i} P_{i}^{\star}}{\sum_{i} D_{i} + \sum_{i} K_{i}^{-1}}$$

Banded frequency regulation

$$\sum_{i} K_{i}^{-1} \geq \frac{\sum_{i} P_{i}^{\star}}{\varepsilon} - \sum_{i} D_{i} \Rightarrow |\omega_{\text{sync}}| \leq \varepsilon$$



Leaky integral control

$$T_i \dot{p}_i = \omega_i - K_i p_i$$

$$u_i = -p_i$$

Steady-state

$$u_i^{\star} = -K_i^{-1}\omega_{\text{sync}}$$

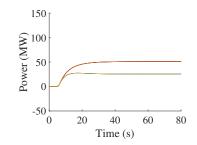
Power sharing

$$K_i u_i^* = K_j u_i^*$$

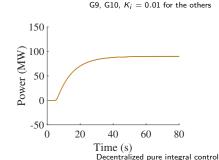
• Approx steady-state optimality

minimize_{$u \in \mathbb{R}^n$} $\sum_i K_i u_i^2$ subject to $\sum_i P_i^* +$

$$\begin{array}{cc} \sum_{i} K_{i} u_{i}^{2} \\ \sum_{i} P_{i}^{*} + \sum_{i} (1 + D_{i} K_{i}) u_{i} = 0 \end{array}$$



Leaky integral control $T_i=0.05\mathrm{s},\,K_i=0.005$ for G3, G5, G6,

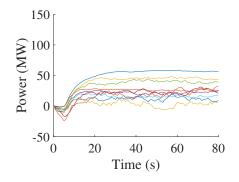


Leaky integral control

$$T_i \dot{p}_i = \omega_i + \eta_i - K_i p_i$$

$$u_i = -p_i$$

- Noisy measurements $\omega_i + \eta_i$
- Non-zero mean noise η
- Noise bound $\overline{\eta} = 0.01 \mathrm{Hz}$



Leaky integral control $T_i=0.05$ s, $K_i=0.005$ for G3, G5, G6, G9, G10, $K_i=0.01$ for the others

Robust frequency regulation (ISS)
$$\checkmark$$

$$||x(t)||^2 \le \lambda e^{-\hat{\alpha}t} ||x(0)||^2 + \gamma (\sup_{t \in \mathbb{R}_{>0}} ||\eta(t)||)^2$$

where $\lambda, \hat{\alpha}, \gamma$ are positive constants and

$$x = \operatorname{col}(\delta - \delta^*, \omega - \omega^*, p - p^*)$$

measures the deviation from the synchronous solution

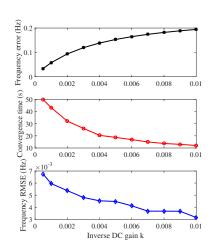
Impact of control parameters

Tuning of the gains K_i

$$K_i = k$$
 for G3 G5 G6 G9 G10
 $K_i = 2k$ for others
 $T_i = \tau = 0.05s$

As $k \nearrow$

- \hat{lpha} \nearrow implies convergence time \searrow
- $\gamma \searrow$ implies RMSE \searrow



Increasing gains K_i leads to

- reduced accuracy in frequency regulation
- faster response
- increased robustness to noise

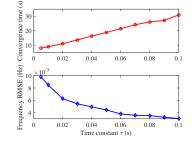
Impact of control parameters

Tuning of the time constants T_i

$$\begin{split} K_i &= 0.005 \quad \text{for G3 G5 G6 G9 G10} \\ K_i &= 0.01 \quad \text{for the others} \\ T_i &= \tau \end{split}$$

As $\tau \nearrow$

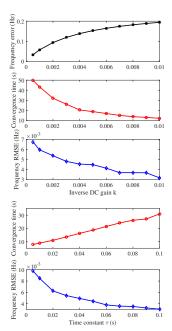
- $\hat{\alpha} \searrow$ implies convergence time \nearrow
- $\gamma \searrow \text{ implies RMSE } \searrow$



Increasing time constants T_i leads to

- slower response
- increased robustness to noise

Tuning recommendations



 Fix ratios between K_i⁻¹ from generating units operation costs

$$u_i^{\star} = -K_i^{-1}\omega_{\text{sync}}$$

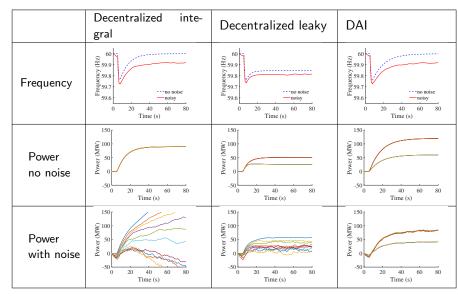
• Fix $\sum_{i} K_{i}^{-1}$ for banded frequency regulation

$$\sum_i K_i^{-1} \geq \frac{\sum_i P_i^{\star}}{\varepsilon} - \sum_i D_i$$

 Fix T_i to strike a trade-off between frequency rejection rate and noise rejection

$$T_i \nearrow \Rightarrow \hat{\alpha} \searrow \text{ and } \gamma \searrow$$

A further comparison



DAI $T_i \dot{p}_i = \sum_{j \in \mathcal{N}_i^c} (p_j - p_i) + K_i^{-1} \omega_i \quad u_i = -K_i^{-1} p_i$

Robust stability

Proof is Lyapunov-based, using a strict Lyapunov function

$$W = U(\delta) - U(\delta^*) - \nabla U(\delta^*)^{\top} (\delta - \delta^*)$$

+ $\frac{1}{2} (\omega - \omega^*)^{\top} M(\omega - \omega^*) + \frac{1}{2} (p - p^*)^{\top} T(p - p^*)$
+ $\epsilon (\nabla U(\delta) - \nabla U(\delta^*))^{\top} M(\omega - \omega^*).$

- $U(\delta) = -\frac{1}{2} \sum_{i \neq j} B_{ij} V_i V_j \cos(\delta_i \delta_j)$ potential energy
- W with $\epsilon=0$ is the "shifted" energy function $H+\frac{1}{2}p^{T}Tp$
- ullet For sufficiently small ϵ , W is strictly decreasing along the solutions
- This allows for quantification of robustness to noise

Conclusions

A fully decentralized stabilizing integral control for achieving robust noise-rejection, satisfactory steady-state regulation, desirable transient performance

- These objectives are not aligned and trade-offs must be found
- Tuning guidelines are provided
- Resulting time constants T_i/K_i compatible with actuator response time
- Low-pass filter compares favourably wrt droop (noise rejection)

Future work

- Lead compensators could improve transient performance
- Extension more accurate physical models
- Impact of topology on the diffusion of noise and scalability

Reference

Weitenberg, Jiang, Zhao, Mallada, De Persis, Dörfler (2018). Robust decentralized secondary frequency control in power systems: merits and trade-offs. *IEEE Transactions on Automatic Control*, in press, available as arXiv:1711.07332

 Weitenberg, De Persis, Monshizadeh (2018). Exponential convergence under distributed averaging integral frequency control. Automatica, 98, 103-113.

*Weitenberg, De Persis (2018). Robustness to noise of distributed averaging integral controllers. Systems & Control Letters, 119, 1-7.

Thank you!

