

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

- Introduction
 - ► Who Am I?
 - ► Research Topic
 - ► Focus of the talk
- Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
- Conclusion

Who Am I?

Personal Information

- Researcher at Energyville-VITO.
- Last-year PhD student at TU Delft.
- ▶ **Research topic:** algorithms for electricity markets that help increase integration of renewable energy sources (RES).

- Introduction
 - ► Who Am I?
 - ► Research Topic
 - ► Focus of the talk
- Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Research Topic

Problem

- Generation of RES is uncertain due to weather dependence.
- As RES penetration increases:
 - 1. Electricity prices becomes more volatile.
 - 2. Imbalances between generation and consumption increase.

Solution

Control algorithms for energy systems and electricity markets that:

- 1. Reduce negative effects of RES integration.
- 2. Increase the profitability of RES.

Role of Forecasting

Importance of Forecasting

- Forecasting is key to develop these control algorithms.
- ► Knowledge of future prices allows (among others):
 - 1. Control RES systems to maximize profits.
 - 2. Reduce risks by hedging against uncertainties.
 - 3. Solve stochastic economic dispatch problems.

- Introduction
 - ► Who Am I?
 - ▶ Research Topic
 - ► Focus of the talk
- Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Focus of the talk

Electricity Markets

▶ Electricity is traded in several sequential markets.

Topic of the Talk

Day-ahead price forecasting

Focus of the talk

Motivation

- More volatile than futures and more liquid than intraday
- ▶ Large amount of RES traded on it
- Most of the literature focus on the day-ahead market
- Described methods apply to other markets

Day-ahead forecasting

Definition

▶ Before deadline in day d − 1, predict the 24 (48) day-ahead prices of day d.

Source: Electricity price forecasting: A review of the state-of-the-art with look into the future

Literature

- ▶ 20-30 years old field with numerous and diverse methods:
 - Multi-agent models
 - Fundamental models
 - ullet Statistical & machine learning models o Most accurate
- ► This talk: we focus on statistical & machine learning models

- Introduction
- Time Series Forecasting
 - ► Types of forecasting
 - ▶ Point Forecasting
 - ► Probability Forecasting
 - ► Scenario Generation
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Types of forecasting

Time series forecasting

- ▶ The forecast type depends on the type of information needed:
 - Point forecast: expected prices
 - Probability forecast: price distribution
 - Scenario forecast: possible price realizations

- Introduction
- 2 Time Series Forecasting
 - ► Types of forecasting
 - ▶ Point Forecasting
 - Probability Forecasting
 - ► Scenario Generation
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Point forecasting

Definition

- Point forecast only represent expected price
- It does not model uncertainty, e.g. forecasting error
- ▶ It cannot be used for assessing risks

 $\textbf{Fig: } \ \, \textbf{Day-ahead point forecast for the } 14/12/2018 \ \text{in the Nordpool}$

- Introduction
- Time Series Forecasting
 - ► Types of forecasting
 - ▶ Point Forecasting
 - ► Probability Forecasting
 - ► Scenario Generation
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Probability forecasting

Definition

- Probability forecast represent price distribution
- It models the uncertainty of the forecasting error
- Two disadvantages:
 - 1. Hard to use in stochastic optimization problems
 - 2. No correlation between prices \rightarrow unrealistic samples

 $\textbf{Fig:} \ \ \text{Day-ahead probability forecast for the } 14/12/2018 \ \text{in the Nordpool}$

- Introduction
- 2 Time Series Forecasting
 - ► Types of forecasting
 - ▶ Point Forecasting
 - ▶ Probability Forecasting
 - ► Scenario Generation
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Scenario Generation forecasting

Definition

- Scenarios represent possible price realizations
- ▶ They model not just uncertainty but also correlation
- ► Easy to use in stochastic optimization problems

Fig: Day-ahead price scenarios for the 14/12/2018 in the Nordpool

- Introduction
- 2 Time Series Forecasting
- 3 Point forecasting
 - Definition
 - Statistical Methods
 - ▶ Machine Learning
 - Deep Learning
 - Summary
- Probability forecasting
- Scenario Generation

Definition

Day-ahead point forecast

Expected price p at time k + h estimated at time k:

$$\hat{p}_{k+h} = M(\theta, \mathbf{x}_k)$$

- \hat{p} : expected value of p
- \triangleright θ : model parameters
- ▶ *k*: midday previous day

- ▶ x: model inputs
- ▶ *M*: forecast model
- \triangleright 24 horizons h_1, \ldots, h_{24}

Model inputs

Definition

Inputs \mathbf{x}_k defined by two types of data:

- 1. Historical prices at previous days, i.e. $p_{d-1}, \ldots, p_{d-n_d}$
- 2. Exogenous inputs:
 - ullet Wind power forecast day d
 - ullet Load forecast for day d

Type of Models

Types of models

Literature very large: numerous and different methods.

Families of methods

Techniques are usually divided into two families:

- 1. Statistical methods: ARIMA, ARMAX, ARX...
- 2. Machine learning methods: neural nets, regression trees...

Combining models

Combining different types of models improves accuracy (not covered here)^a

^aNowotarski, Raviv, et al., "An empirical comparison of alternative schemes for combining electricity spot price forecasts".

- Introduction
- 2 Time Series Forecasting
- Point forecasting
 - Definition
 - Statistical Methods
 - Machine Learning
 - Deep Learning
 - Summary
- Probability forecasting
- Scenario Generation

Statistical Methods - Definition

Properties

- No clear definition of a statistical method
- Sometimes the same as some machine learning methods
- In price forecasting, they are defined by their properties:
 - 1. Linear models.
 - 2. Usually including autoregressive terms.
 - 3. Sometimes including moving average terms.
 - 4. Designed to include seasonal patterns.

Example

ARX

- Linear model that considers:
 - 1. Autoregressive inputs
 - 2. Seasonal components
 - 3. Exogenous inputs
- Example:

$$\hat{p}_{d,h} = \theta_1 \cdot p_{d-1,24} + \ldots + \theta_{m_1} \cdot p_{d-7,h} + \theta_{m_1+1} \cdot z_1 + \ldots + \theta_{m_1+n} \cdot z_n$$

Statistical Methods - Pros and Cons

Advantages

- ✓ Easy and fast to implement and estimate
- ✓ For pure time series data, i.e. no exogenous inputs, they typically outperform machine learning methods
- ✓ Small parameter number ⇒ for small datasets they outperform machine learning methods

Drawbacks

- Sometimes too simple for the nonlinear dynamics of prices. Not good for markets with rapid variations and high frequency changes
- If prices depend on several exogenous inputs; e.g. demand, or generation; they might not model the complex relations.

Statistical Methods - State of the art

- State-of-the-art statistical method: fARX-Lasso^a
- Evaluated in multiple markets^{abc}
 - 1. Always better than other statistical methods
 - 2. Sometimes better than machine learning methods
 - 3. Sometimes worse than machine learning methods
- So many ARX in literature, how is this different?
 - Literature models had limited input features
 - 200+ input features + implicit feature selection via LASSO

^aUniejewski, Nowotarski, et al., "Automated variable selection and shrinkage for day-ahead electricity price forecasting"

^bUniejewski and Weron, "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models"

^CLago et al., "Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms"

Statistical Methods - State of the art

fARX-Lasso Improvements

- Variance stabilization transformation^a
- ► Average over different calibration windows^b

^aUniejewski and Weron, "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models".

^bMarcjasz et al., "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting".

- Introduction
- 2 Time Series Forecasting
- Point forecasting
 - Definition
 - Statistical Methods
 - ► Machine Learning
 - ▶ Deep Learning
 - Summary
- Probability forecasting
- Scenario Generation

Machine Learning (ML) - Outline

Outline

While the field of ML is extensive, forecasting of electricity prices is usually based in one of three family of methods:

- 1. Neural networks
- 2. Ensemble of trees
- 3. Support vector regressors

Machine Learning (ML) vs Statistical Methods (SM)

Summary

- Not clear whether ML methods are better than SM
 - Some studies have shown ML being better
 - Many others have shown SM being better
- In general, the best model depends on
 - 1. Dataset/market under study
 - 2. Period under study
 - 3. Type and number of exogenous inputs
- Several studies have shown neural nets perform poorly

Machine Learning - Pros and Cons

Advantages

- ✓ Better suitable for prices with complex nonlinear dynamics, e.g. prices with rapid variations or prices with frequent and large spikes
- ✓ They can better model the complex relation between some exogenous inputs and prices, e.g. prices in neighboring markets
- ✓ Estimation times larger than most statistical methods, but with current standard laptop hardware, below 10 minutes.

Drawbacks

- For pure time series data, i.e. no exogenous inputs, they are overkilling and underperform statistical methods
- X Large number of parameters \iff they require larger datasets than statistical methods.
- X Harder to interpret input-output relations.

- Introduction
- 2 Time Series Forecasting
- Point forecasting
 - Definition
 - Statistical Methods
 - ▶ Machine Learning
 - Deep Learning
 - Summary
- Probability forecasting
- Scenario Generation

Deep Learning (DL) - Outline

Motivation

- ▶ In recent years, several studies have shown deep learning (DL) models being better than traditional ML and statistical methods
- Natural question 1: what is DL?
- Natural question 2: are DL methods really better?

What is deep learning?

Deep Learning vs Machine Learning

Two main and complementary views:

- Large neural networks
- ▶ Feature learning, a.k.a. automatic feature extraction

Source: towardsdatascience.com/why-deep-learning-is-needed-overtraditional-machine-learning-1b6a99177063

Source: quantdare.com/what-is-the-difference-between-deep-learning-andmachine-learning

What is deep learning?

Definition

- Wikipedia: artificial neural networks with multiple hidden layers that can extract higher level features
- New classes of neural networks
- New complementary algorithms:
 - New regularization techniques, e.g. dropout
 - New optimizers, e.g. Adam
 - New activation functions, e.g. ReLU

Source: Van Veen, F. & Leijnen, S. (2019). The Neural Network Zoo

DL for electricity price forecasting

Observation I

New DL methods for price forecasting are continuously being proposed

Observation II

Most of them claim to have state-of-the-art result. Yet:

- Most only used 2-4 benchmark models (all based on ML)
- ▶ None compared with fARX-Lasso (state-of-the-art statistical method)

Motivation

We proposed new DL methods and performed an extensive comparison^a:

▶ 23 literature models (inc. fARX-Lasso) + commercial software

^aLago et al., "Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms".

DL Case Study - Definition

Study Description

- ▶ 4 DL models proposed:
 - Deep feedforward network (DNN)
 - 2 Recurrent network (LSTM and GRU)
 - Convolutional network (CNN)
- ► Evaluated BELPEX (Belgian) market
 - High forecasting errors and volatile prices
 - Difficult market for statistical methods
- ► Comparison against 23 literature models + commercial software

Study importance

- Remains to date as the only comparison of DL against several statistical methods
- ▶ Remains to date as the only comparison of DL against fARX-Lasso

DL Case Study - Results

3/4 DL models better than literature

Performance separation between ML and SM

fARX-Lasso as good as traditional ML

Model	SMAPE [%]	Class
DNN	12.34	
GRU	13.04	
LSTM	13.06	
MLP	13.27	
SVR	13.29	ML
SVR-SOM	13.36	
SVR-ARIMA	13.39	
GBT	13.74	
fARX-EN	13.76	SM
CNN	13.91	ML
fARX-Lasso	13.92	SM
Commercial	14.11	
RBF	14.77	ML
fARX	14.79	SM
RF	15.39	ML
IHMARX	16.72	
DR	16.99	
TARX	17.08	
ARX	17.34	
SNARX	17.58	
TBATS	17.9	
ARIMA-GARCH	19.3	SM
AR	19.31	
DSHW	19.4	
WARIMA-RBF	22.82	
WARIMA	22.84	

DL Case Study - Discussion

DL Performance

- Why the DL models performed so good?
 - 1. Market under study
 - 2. Depth and number of neurons (previous studies used shallow networks)
 - 3. Dataset size
 - 4. Optimization method
- Paper^a provides analysis of these factors (not discussed here)

Statistical Methods vs Machine Learning

Statistical methods performed worse than most ML. However:

- BELPEX is a difficult market for statistical methods
- ► fARX-Lasso still performs as good as traditional ML

^aLago et al., "Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms".

DL - Summary

- 1. DL models might obtain state-of-the-art results
- 2. However, this might be conditioned to different factors, e.g. market under study or exogenous inputs
- 3. Experimental results limited: more studies needed
 - Current work: evaluation of deep neural networks against fARX-Lasso for Nordpool, PJM, and EPEX-FR.

- Introduction
- 2 Time Series Forecasting
- Point forecasting
 - Definition
 - Statistical Methods
 - ▶ Machine Learning
 - ▶ Deep Learning
 - **▶** Summary
- Probability forecasting
- Scenario Generation

Point Forecasting - Summary

- 1. No method is the best under all conditions
- 2. Best model will depend on different factors, e.g.
 - Without exogenous inputs, DL or ML are overkilling
 - For complex price dynamics, statistical methods might not suffice
- DL models might obtain state-of-the-art results conditioned to these factors

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
 - Definition
 - ► Main Methods
 - Quantile Methods
 - ► New Interesting Trends
 - Summary
- Scenario Generation

Definition

Day-ahead probability forecast

► Cumulative distribution (CDF) of price *p* at time *h* estimated at *k*:

$$F(p_h) = M(\theta, \mathbf{x}_k)$$

- \blacktriangleright F(p): estimated CDF of p
- \triangleright θ : model parameters
- ▶ *k*: midday previous day

- x: model inputs
- ► *M*: probabilistic model
- ▶ 24 CDFs: $F(p_1), \dots, F(p_24)$

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
 - Definition
 - ► Main Methods
 - Quantile Methods
 - ► New Interesting Trends
 - Summary
- Scenario Generation

Probability forecasting methods

Types of models

Two families of methods:

- Parametric models
- Quantile models

Parametric models

► The forecast is given by a full parameterization of the probability distribution, e.g:

$$p_h \sim \mathcal{N}(\mu_{p_h}, \sigma_{p_h})$$

- ► Two main parametric distributions
 - ullet Johnson's S_U distribution
 - Skew-t distribution

Probability forecasting methods

Quantiles

- ▶ Define random variable p and its CDF F(p).
- Quantile q^{α} of p is the value at which the probability of p is less than or equal to α , i.e. $\alpha = F(q^{\alpha})$.

Quantile functions

- F(p) is approximated building quantiles models $q^{\alpha}(\theta, \mathbf{x})$
- ▶ 4 main methods exist:
 - 1. Empirical quantiles
 - 2. Quantile regression
 - 3. Quantile regression averaging
 - 4. Bootstrapping

Parametric vs Quantile Methods

- 1. Parametric models expected to perform worse than quantile models^a
 - Parametric models limited by distribution assumption
- 2. Recent study: parametric model performs similar to quantile method^a
 - Skew-t distribution slightly better than linear quantile regression
 However:
 - Other parametric models were worse than quantile model
 - Quantile model similar performance as the best parametric
 - Best quantile model not considered
- 3. Here we focus on quantile methods
 - More general: no assumptions needed
 - Often better accuracy

^aGianfreda et al., "A stochastic latent moment model for electricity price formation"

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
 - Definition
 - ► Main Methods
 - ► Quantile Methods
 - ► New Interesting Trends
 - Summary
- Scenario Generation

Prediction intervals vs Quantiles

Difference

- Some probabilistic forecasting papers provide prediction intervals (PI)
- Some others provide quantiles q^{α}
- Quantiles are just a generalization of prediction intervals
 - \bullet Example: 90% PI equals the interval $[q^5,q^{95}]$
- In this talk, we use the word quantile as a general term

Quantile Method I - Empirical Quantiles

Algorithm

1. Consider past point forecasts at hour *h*:

$$[\hat{p}_{d,h},\ldots,\hat{p}_{d-n,h}]^{\top}$$

- **2.** Compute historical forecasting errors $\epsilon_d, \ldots, \epsilon_{d-n}$.
- **3.** Compute empirically quantile distribution $q^{\alpha}(\epsilon)$ of errors.
- **4.** Quantile function of price at hour h given by:

$$q^{\alpha}(p_{d,h}) = \hat{p}_{d,h} + q^{\alpha}(\epsilon)$$

i.e. point prediction plus quantile function of errors.

Quantile Method II - Quantile Regression

Quantile Regression

- ▶ Parameterizes quantile functions $q^{\alpha}(\cdot)$ by model $M^{\alpha}(\theta, \mathbf{x})$.
- ▶ Estimates $M^{\alpha}(\theta, \mathbf{x})$ by solving:

$$\min_{\theta} \sum_{i=1}^{N} (\alpha - 1) \max(0, M^{\alpha}(\theta, \mathbf{x}_i) - p_i) + \alpha \max(0, p_i - M^{\alpha}(\theta, \mathbf{x}_i))$$

where:

- $\{(\mathbf{x}_i, p_i)\}_{i=1}^N$ dataset of prices and inputs
- ullet Inputs \mathbf{x}_i the same as for point forecasts

Examples

- ▶ Most common model: linear quantile regression $M^{\alpha}(\theta, \mathbf{x}) = \theta^{\top} \mathbf{x}$
- ▶ Nonlinear version: $M^{\alpha}(\theta, \mathbf{x})$ as a neural network

Method III - Quantile Regression Averaging

Quantile Regression Averaging (QRA)

- ► Estimate quantiles using point forecasts and linear quantile regression:
 - 1. Build N different point forecasts
 - 2. Use the N predictions as vector of input features ${\bf x}$
 - 3. Apply standard quantile regression

Motivation

Estimate quantiles for nonlinear dynamics with linear method

Method IV- Bootstrapping

Conceptual Idea

- 1. Generate datasets obtained via resampling with replacement
- 2. Estimate a point forecast \hat{p}_h model for each dataset

 $\textbf{Source}: \ \mathsf{https:} / / \mathsf{hub.packtpub.com} / \mathsf{ensemble-methods-optimize-machine-learning-models} /$

Method IV- Bootstrapping

Conceptual Idea

- 1. Generate datasets obtained via resampling with replacement
- 2. Estimate a point forecast \hat{p}_h model for each dataset
- 3. Use models to estimate quantiles $q^{lpha}(\epsilon_{
 m m})$ of model errors
- **4.** Use $q^{\alpha}(\epsilon_{\mathrm{m}})$ to estimate quantiles $q^{\alpha}(\epsilon_{\mathrm{p}})$ of process errors
- 5. Quantile function of price at hour h given by:

$$q^{\alpha}(p_h) = \mathbb{E}\{\hat{p}_h\} + q^{\alpha}(\epsilon_p) + q^{\alpha}(\epsilon_m)$$

Characteristics

- ▶ It distinguishes between model and process errors
- ▶ More computationally demanding than the others

Quantile Methods - State of the art

- Several studies have evaluated and compare quantile methods, e.g.
 - 1. Global Energy Forecasting Competition (GEFCom2014)
 - 2. Different papersabc
- State-of-the-art method: Quantile regression averaging (QRA)
- Inexistent bootstrapping vs QRA comparison.
 - In our experience, bootstrapping performs worse.

^a Nowotarski and Weron, "Recent advances in electricity price forecasting: A review of probabilistic forecasting"

b Uniejewski, Marcjasz, et al., "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting"

^CMacieiowska et al., "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging"

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
 - Definition
 - ► Main Methods
 - Quantile Methods
 - ► New Interesting Trends
 - Summary
- Scenario Generation

New Interesting Trend I - Methods better than QRA

Recent Developments

Last months: 2 approaches that performs similar to QRA were proposed:

- 1. A Bayesian stochastic volatility model^a
- 2. A conformal prediction model^b

Importance

Methods that perform in some cases better than the state-of-the-art

Word of caution

- QRA still perform similar to these two
- New methods tested in one study, QRA in many of them

^aKostrzewski et al., "Probabilistic electricity price forecasting with Bayesian stochastic volatility models"

^bKath et al., "Conformal Prediction Interval Estimations with an Application to Day-Ahead and Intraday Power Markets"

New Interesting Trend II - Deep Learning (DL)

Summary

- Research on DL for probability forecasting is very limited
- ▶ Many claim to do DL for probability forecasting^a, however
 - DL is only used for point forecasting
 - Prob. forecasting is made based on standard methods

Probability Forecasting based on DL

To the best of my knowledge, only two works^{ab} in DL

Drawback: not compared with QRA or other standard methods

^aAfrasiabi et al., "Probabilistic deep neural network price forecasting based on residential load and wind speed predictions".

^aBrusaferri et al., "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices".

^bHu et al., "Distribution-Free Probability Density Forecast Through Deep Neural Networks".

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
 - Definition
 - ► Main Methods
 - Quantile Methods
 - ► New Interesting Trends
 - Summary
- Scenario Generation

Probability Forecasting - Summary

- 1. Two main family of methods: parametric and quantile models
 - Parametric worse accuracy due to distribution assumption
- 2. There are several quantile models:
 - State-of-the-art: Quantile regression averaging (QRA)
- 3. Research on deep learning for probability forecasting is limited
 - Several works use deep learning as a buzzword

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
 - ► Introduction
 - Main Methods
 - Comparison
- Conclusion

Definition

Scenario generation forecast

- ▶ **Recall**: we need possible price realization:
 - Probability functions hard to use in stochastic optimization
 - Probability functions do not consider price correlations
- ▶ **Goal**: generate N possible price scenarios $S^1, ..., S^N$
 - ullet $S^i = [p^i_1, \dots, p^i_{24}]$: possible realization of day-ahead prices
 - Scenarios with marginal distributions equal to probability forecasts

Scenario Generation - Literature

Observations

- 1. Specific scenario generation literature is scarce
- 2. In general, existing papers do not propose new methods:
 - Their research goal is to solve a stochastic optimization problem, e.g. optimal market bidding
 - They consider a generic scenario generation method
- 3. No paper comparing different methods

Consequences

- Many methods could be presented
- ▶ It would be hard to draw comparisons
- ▶ We briefly present the main families and explain their differences

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
 - ▶ Introduction
 - ► Main Methods
 - Comparisor
- 6 Conclusion

Scenario generation methods

Types of methods

Scenario generation methods used for electricity prices and stochastic optimization can be classified into three families:

- 1. Sampling-based methods
- 2. Optimization-based methods
- 3. Copulas-based methods

Scenario generation - Sampling based methods

Steps

- 1. Fit stochastic model to prices
 - ARMA model with Gaussian errors^a
 - ARMA for prices with GARCH model for conditional error variance^b
 - Neural network model with Gaussian errors^c
- 2. Use stochastic model to recursively simulate scenarios

^aFleten et al., "Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer".

 $^{^{\}text{C}}\text{Vagropoulos}$ et al., "ANN-based scenario generation methodology for stochastic variables of electric power systems".

 $[^]b$ Faria et al., "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account".

Scenario generation - Optimization based methods

Steps

- 1. Define the statistical metrics of scenarios
 - Metrics usually based on historical data
 - Example: the first four moments of the prices^{ab}
- 2. Solve optimization problem to generate scenarios:
 - Scenarios as optimization variables
 - Objective: difference between desired and scenario metrics
- 3. Result: scenarios that satisfy statistical metrics

 $^{^{}a}$ Høyland et al., "A heuristic for moment-matching scenario generation".

^bJensen et al., "A comparison of scenario generation methods for the participation of electric vehicles in electricity markets".

Scenario generation - Copula based methods

Sklar's Theorem applied to prices^a

- ▶ Define the multivariate CDF of the 24 prices by $H(p_1, ..., p_{24})$
- lacksquare Define the marginal CDFs of each price by $F_1(p_1),\ldots,F_{24}(p_{24})$
- ▶ There exists a copula function C such that^a:

$$C(F_1(p_1),\ldots,F_{24}(p_{24})) = H(p_1,\ldots,p_{24})$$

i.e. the marginal and multivariate distributions are related by ${\cal C}$

Consequence

 We can obtain a multivariate distribution based on probability forecasts and sample from it to generate scenarios

^aSklar, "Fonctions de Répartition à n Dimensions et Leurs Marges".

Scenario generation - Copula based methods

Steps

- 1. Use probability forecasting methods to obtain the marginal distributions $F_1(p_1), \ldots, F_{24}(p_{24})$
- 2. Define the copula type, e.g.
 - Empirical copula^a
- 3. Generate or estimate copula using the marginal distributions
- 4. Generate scenarios by sampling from the copula

^aToubeau et al., "Deep Learning-Based Multivariate Probabilistic Forecasting for Short-Term Scheduling in Power Markets".

Outline

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
 - ► Introduction
 - Main Methods
 - Comparison
- 6 Conclusion

Comparison

- Hard to compare the different methods in terms of accuracy
 - No empirical comparison exists (to the best of my knowledge)
 - We can list the advantages and drawbacks
- Sampling-based methods
 - ✓ Simpler and easier to estimate
 - Bad approximations with few scenarios
- Optimization based method
 - ✓ Very flexible: generated scenarios can display any desired metrics
 - X Large computational complexity
- Copula-based methods
 - ✓ Generated scenarios follow marginal distributions
 - ✓ For large number of scenarios, less complex than optimization
 - X Distribution depends on selected copula

Outline

- Introduction
- 2 Time Series Forecasting
- Point forecasting
- Probability forecasting
- Scenario Generation
- 6 Conclusion

Conclusion

- 1. We have presented forecasting methods for electricity prices
 - Point forecasts
 - Probability forecast
 - Scenario generation methods
- 2. For the three fields, the best forecasting model depend upon:
 - Market under study
 - Type and size of input data
 - Others
- 3. Deep learning models are continuously being proposed:
 - Nearly all of them are limited to point forecasting
 - Further comparison against state-of-the-art methods is still needed

References I

- M. Afrasiabi et al. "Probabilistic deep neural network price forecasting based on residential load and wind speed predictions". In: *IET Renewable Power Generation* 13.11 (2019), pp. 1840–1848. DOI: 10.1049/iet-rpg.2018.6257.
 - Alessandro Brusaferri et al. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices". In: Applied Energy 250 (2019), pp. 1158–1175. DOI: https://doi.org/10.1016/j.apenergy.2019.05.068.
 - Eduardo Faria and Stein-Erik Fleten. "Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account". In: *Computational Management Science* 8.1 (Apr. 2011), pp. 75–101. DOI: 10.1007/s10287-009-0108-5.

References II

- Stein-Erik Fleten and Trine Krogh Kristoffersen. "Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer". In: European Journal of Operational Research 181.2 (2007), pp. 916–928. DOI: https://doi.org/10.1016/j.ejor.2006.08.023.
- Angelica Gianfreda and Derek Bunn. "A stochastic latent moment model for electricity price formation". In: *Operations Research* 66.5 (2018), pp. 1189–1203.
- Kjetil Høyland, Michal Kaut, and Stein W Wallace. "A heuristic for moment-matching scenario generation". In: *Computational optimization and applications* 24.2-3 (2003), pp. 169–185.
 - T. Hu et al. "Distribution-Free Probability Density Forecast Through Deep Neural Networks". In: *IEEE Transactions on Neural Networks and Learning Systems* (2019), pp. 1–14. ISSN: 2162-237X. DOI: 10.1109/TNNLS.2019.2907305.

References III

- Ida Græsted Jensen et al. "A comparison of scenario generation methods for the participation of electric vehicles in electricity markets". In: *International Transactions on Electrical Energy Systems* 29.4 (2019), e2782. DOI: 10.1002/etep.2782.
- Christopher Kath and Florian Ziel. "Conformal Prediction Interval Estimations with an Application to Day-Ahead and Intraday Power Markets". In: arXiv preprint arXiv:1905.07886 (2019).
 - Maciej Kostrzewski and Jadwiga Kostrzewska. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models". In: *Energy Economics* 80 (2019), pp. 610–620. DOI: https://doi.org/10.1016/j.eneco.2019.02.004.
 - Jesus Lago, Fjo De Ridder, and Bart De Schutter. "Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms". In: *Applied Energy* 221 (July 1, 2018), pp. 386–405. DOI: 10.1016/j.apenergy.2018.02.069.

References IV

- Katarzyna Maciejowska, Jakub Nowotarski, and Rafał Weron. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging". In: *International Journal of Forecasting* 32.3 (2016), pp. 957–965. DOI: 10.1016/j.ijforecast.2014.12.004.
- Grzegorz Marcjasz, Tomasz Serafin, and Rafał Weron. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting". In: *Energies* 11.9 (2018), p. 2364. DOI: 10.3390/en11092364.
 - Jakub Nowotarski, Eran Raviv, et al. "An empirical comparison of alternative schemes for combining electricity spot price forecasts". In: *Energy Economics* 46 (Nov. 2014), pp. 395–412. ISSN: 0140-9883. DOI: 10.1016/j.eneco.2014.07.014. (Visited on 04/04/2017).

References V

Renewable and Sustainable Energy Reviews 81 (2018), pp. 1548–1568. DOI:

https://doi.org/10.1016/j.rser.2017.05.234.

J. Toubeau et al. "Deep Learning-Based Multivariate Probabilistic Forecasting for Short-Term Scheduling in Power Markets". In: *IEEE Transactions on Power Systems* 34.2 (Mar. 2019), pp. 1203–1215. DOI: 10.1109/TPWRS.2018.2870041.

References VI

- Bartosz Uniejewski, Grzegorz Marcjasz, and Rafał Weron. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II Probabilistic forecasting". In: *Energy Economics* 79 (2019), pp. 171–182. DOI: https://doi.org/10.1016/j.eneco.2018.02.007.
- Bartosz Uniejewski, Jakub Nowotarski, and Rafał Weron. "Automated variable selection and shrinkage for day-ahead electricity price forecasting". In: *Energies* 9.8 (2016), p. 621. DOI: 10.3390/en9080621.
- Bartosz Uniejewski and Rafał Weron. "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models". In: Energies 11.8 (Aug. 2018), p. 2039. DOI: 10.3390/en11082039.

References VII

Stylianos I. Vagropoulos et al. "ANN-based scenario generation methodology for stochastic variables of electric power systems". In: *Electric Power Systems Research* 134 (2016), pp. 9–18. DOI: https://doi.org/10.1016/j.epsr.2015.12.020.