Data and Society in the energy transition

Devin Diran & Tara Geerdink – TNO, Strategy & Policy

innovation for life

Presentation for the SIET Platform at TU Delft | March 26 2021

- 1. Introduction TNO
- 2. Energy transition
- 3. Information need
- 4. Experimenting with Data driven Energy Policy Making
- 5. The way forward
- 6. Discussion

TNO, INNOVATION FOR LIFE

TNO CONNECTS PEOPLE AND KNOWLEDGE TO CREATE INNOVATIONS THAT BOOST THE SUSTAINABLE COMPETITIVE STRENGTH OF COMPANIES AND THE WELL-BEING OF SOCIETY. THIS IS OUR MISSION AND THIS IS WHAT WE PURSUE WITH OUR KNOWLEDGE AND EXPERIENCE FOR OVER 80 YEARS.

LOCATIONS IN THE NETHERLANDS

INTERNATIONAL PROFILE

WE DO THIS BY TAKING A MULTIDISCIPLINARY APPROACH

UNIT STRATEGIC ANALYSIS & POLICY STRATEGY AND POLICY – EXPERTISE GROUP

'Turning complex issues into sustainable innovations'

How can we accelerate the energy transition? How can the use of data help us address societal challenges?

Team Environmental Planning

- Enhancing strategic decision-making on sustainability and spatial development;
- Studying the interaction between knowledge, people and the environment;
- Investigate the (knowledge) transfer and implementation of new technical solutions;
- Aimed at making the energy supply, mobility flow and urbanisation more sustainable;
- And embedding and justifying the technological approach in respect of new problems faced by society

The innovation for life

ENERGY TRANSITION OBJECTIVES AND CHALLENGES

CLIMATE AND ENERGY OBJECTIVES

Nog enkele sprongen te gaan

PBL: helft benodigde reductie klimaatakkoord gehaald.

34 Mton reduction extra necessary for the CO2-reduction target of -49%. The target for 14% sustainable energy in 2020 is not achieved, in 2018 NL has the lowest share with 7,4% in the EU

47 Mton extra CO2-reduction needed for the CO2- reduction target of -55%

SYSTEM CHALLENGES IN THE ENERGYTRANSITION

Information overload and knowledge gaps

Decentral and central

 O_{Δ}^{O}

Grid stability in a diverse energy system

Increasing energy demand and grid limits

Ownership of (significant) costs

Digitalisation is essential to keep this increasingly decarbonised, decentralised energy system running in a stable and affordable way.

Digitalisation as driver

SOCIETAL CHALLENGES

Waarom houdt niemand van de **#Noordzee**? Waarom fungeert onze zee als dumpplek van alles wat we niet op het land willen hebben? sypwynia.nl/dedemocratie-... #VolgWyniasWeek

WHAE FRACK?

Resistance from society

Lucas Hartong – De **#Noordzee** wordt bedreigd door windmolens tpo.nl/2019/09/22/luc... via @TPOnI @dekoran1 @rinsjan

Lucas Hartong - De Noordzee wordt bedreigd door windmolens | TheP... Het kabinet drukt ondertussen de aanleg van de gigantische windmolenparken gewoon door & tpo.nl

Q 123 Ο Δ

How to socially embed sustainable energy innovations?

5-KFR-33

innovation for life D K

ר_ ם פ פ

GUINN

ENERGY TRANSITION DECISION MAKING INFORMATION NEEDS

(Diran, Henrich, & Geerdink, 2020)

DATA NEEDS AND CHALLENGES FOR THE ENERGY TRANSITION

RESEARCH AMONG 8 FRONTRUNNER MUNICIPALITIES AND 3 IMPORTANT DATA SUPPLIERS IN THE NETHERLANDS RESULTS IN:

1) THE DATA NEEDS FOR THE TRANSITION VISION HEAT AND IMPLEMENTATION PLANS

2) CHALLENGES FOR UTILIZING DATA IN THE SUPPORT OF ENERGY TRANSITION PLANNING

REMAINING INFORMATION NEEDS FOR ET

CHALLENGES - DATA FOR THE ENERGY TRANSITION RESEARCH AMONG 8 FRONTRUNNER MUNICIPALITIES

Challenge	Data access, collection and processing (experienced by x of 8 municipalities)	Data analysis, visualization and reporting (experienced by x of 8 municipalities)
It is a resource (time and cost) intensive process		
Strongly scattered data supply		
Many different formats and standards		
Bad findability of data		
Lacking access to data		
Data quality, timeliness and detail level		
Missing and incomplete data		
Data not up to date		
Data not validated		
Data lacking detail level		
	(Diran, van Veenstra, & Geerdink, 2021)	

CHALLENGES - DATA FOR THE ENERGY TRANSITION

RESEARCH AMONG 8 FRONTRUNNER MUNICIPALITIES

(Diran, van Veenstra, & Geerdink, 2021)

Challenge	Data access, collection and processing	Data analysis, visualization and reporting
A lack of expertise and capacity at the municipalities		
The lack of supporting tools or the lack of efficacy of available tools		
Difficult to link, analyze and visualize data		
Limits to the amount of data that can be processed in the available hardware and software		
Legal aspects (AVG, E-wet, etc.)		
AVG: Proper organization and safeguarding of data protection takes a lot of time and legal expertise. (KLIC Data, Type of connections)		
Legal restrictions on the exchange and use of data (Electricity and Gas Code)		

The innovation for life

EXPERIMENTING WITH DATA DRIVEN POLICY

20

DIGITALIZATION IN OUR HOMES

THE TRANSITION OF OUR CITY

TNO innovation for life

POLICY LAB APPROACH TO EXPERIMENT WITH DATA DRIVEN POLICY MAKING

Methods & Models
Experimentation & Co-creation
Impact & Learning

Goal: to design, implement and scale up data experiments by governments and their stakeholders, where new data sources and methods of analysis are utilized.

- Exploring new data sources and technologies with an impact on policy.
- Setting up experiments to test these new technologies, methods and policy models.
- Implement and monitor this policy; formulating possibilities for upscaling.

This involves building up knowledge about the methods and preconditions for collecting, storing and analyzing data about the different phases of the policy-making cycle.

POLICY LAB EXPERIMENT NATURAL GAS FREE NEIGHBOURHOODS

🕨 🕨 Results

- Knowledge gaps for a socially inclusive heat transition
- Challenges faced by local governments to acquire data, process and analyse data, and guarantee privacy and security
- The importance of multi-disciplinary teams
- A method to derive, store, process, share and analyse data in support of decision making
- Data-driven -> Hybrid <- Expert-driven
- Build from the strength and familiarity of the municipality

THE ROLE OF AI FOR LOCAL GOVERNMENTS

- > Supporting the exploration of an ever increasing solution space
- **)** Evidence based underpinning of mental models and discourses
-) Connecting domains and sectors
- **)** Improving efficient and effective data acquisition strategies
-) Empowering citizens and stakeholders
- Facilitating robust decision making by means of uncertainty management

DATA ANALYTICS: MACHINE LEARNING RANDOM FOREST FOR THE SATISFACTION WITH THE LIVING ENVIRONMENT

Various algorithms have been implemented and compared with each other on performance, explainability and transparency. The first implementation was a Random Forest model, which is considered suitable in this experiment for several reasons, namely:

- high prediction accuracy and interpretability of results,
- gaining insight into the most relevant variables for this task, through their predictive power,
- robustness against over-fitting, and
- suitability for datasets with many variables and not necessarily much data.

Attractive dwellings in the	neighbourhood	ł		
Problems and nuisance in the neighbourhood				
Satisfaction in the region				
Feeling at home in the ne	ighbourhood			
Possibilities to relocate				
Good relationship with neighbours Attached to the neighbourhood Well maintained dwellings				
Contact with direct neighbours				
Satisfaction with the population composition		(Diran, van Veenstra, Geerdink &		
Fun and social neighbourhood		publication pending		
* Permutation score: the degree to which the predictive power of the model decreases when variable x				

* Permutation score: the degree to which the predictive power of the model decreases when variable is removed.

A CHECKLIST FOR DATA ETHICS

Based on "De Ethische Data Assistent" by (Utrecht Data School, 2019) and (Diran, van Veenstra, Geerdink & Steenmeijer, 2021), research publication pending

A CHECKLIST FOR DATA ETHICS

Based on "De Ethische Data Assistent" by (Utrecht Data School, 2019) and (Diran, van Veenstra, Geerdink & Steenmeijer, 2021), research publication pending

THE WAY FORWARD

OVERVIEW INFORMATION SUPPLY AND UTILIZATION AN INTEGRATED APPROACH FOR ENERGY TRASITION DECISION MAKING

(Diran, Henrich, & Geerdink, 2020)

RESPONSIBLE AI FOR A SOCIALY INCLUSIVE ENERGY TRANSITION MIRANDA: A TNO X CBS COLLABORATION

A socially inclusive energy transition in which citizens are involved within their capacity and decision-making is tailored to the wishes and capabilities of the citizens.

Call for participation!

DATA AGENDA AND PROGRAMMES

VIVET

Verbetering Informatievoorziening Energietransitie

innovation for life

THANK YOU FOR YOUR TIME

4

TARA GEERDINK VIA TARA.GEERDINK@TNO.NI

Data and Society in the energy transition

Devin Diran & Tara Geerdink – TNO, Strategy & Policy

Presentation for the SIET Platform at TU Delft | March 26 2021

-) Diran, D., Brus, C., Geerdink, T., & van Veenstra, A. F. (2020). Data voor Transitievisie Warmte en Wijkuitvoeringsplan.
- Diran, D., Geerdink, T., van Veenstra, A. F., & Steenmeijer, B. (2021). Data-gedreven beleidsmodel en aanpak voor sociale opgaven in de warmtetransitie: Policy Lab experiment Aardgasvrije wijken Zoetermeer.
-) Diran, D., Henrich, B., & Geerdink, T. (2020). Supporting Municipal Energy Transition Decision-making.
- Diran, D., Hoppe, T., Ubacht, J., Slob, A., & Blok, K. (2020). A Data Ecosystem for Data-Driven Thermal Energy Transition: Reflection on Current Practice and Suggestions for Re-Design. *Energies*, 13(2), 444.
- Diran, D., van Veenstra, A. F., & Geerdink, T. (2021). Knelpunten bij het data gedreven werken aan de energietransitie in de gebouwde omgeving.
- > Utrecht Data School. (2019). De Ethische Data Assistent: Handleiding.
- > van Veenstra, A. F., & Kotterink, B. (2017). Data-driven policy making: The policy lab approach. International Conference on Electronic Participation, 100–111.

