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* Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of
building energy simulation models on a building stock level using actual
energy consumption data — making building energy simulations a more
reliable tool for policymakers.
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Calibration Building Energy
Simulations
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Source: Manfren, M.; Nastasi, B. Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A
Scalable Approach for Buildings. Energies 2020, 13, 621.

Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool
for nolicymakers.
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Calibration Building Energy
Simulations
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TU De I ft Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool
for nolicymakers.




Calibration parameters

* Indoor temperature
* Assumed U-values
* Ventilation rates

* |Infiltration rates

* Occupant Presence
- Domestic hot water

TU De I ft Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool 4
for nolicymakers.
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Energy Predictions on Buildings Stock
Level
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Source: Majcen, D., Itard, L., & Visscher, H. (2013a). Actual and theoretical gas consumption in Dutch dwellings: What causes the
differences? Energy Policy, 61, 460—471. doi: 10.1016/j.enpol.2013.06.018

Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool
for nolicymakers.
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TU De I ft Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool

for nolicymakers.




Calibration parameters

Lower bound standard values Upper bound
according ISSO 82.3
28°C

Indoor temperature setting 15°C 18°C

0.19 0.19 13
0.19 0.43 13
0.43 13 2

13 2 3

13 23 35
-90% 0% +300%
-90% 0% +300%
demand based

with heat recovery

consumption

-39% 0% 286%
-55% 0% 182%
-65% 0% 142%

TU De I ft Based on: P. van den Brom,, L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool 7
for nolicymakers.
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Machine Learning Techniques

» Particle Swarm
» Surrogate model

Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool
for nolicymakers.
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Machine Learning Techniques

* Particle swarm

Particle Swarm Optimization

= particles
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TU De I ft Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool

for nolicymakers.
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Machine Learning Techniques

» Surrogate model

1. Initial Sampling 2. First Surrogate Fitting
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Kim, S.H. & Boukouvala, F. Optim Lett (2019). https://doi.org/10.1007/s11590-019-01428-7

TU De I ft Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool 10
for nolicymakers.




Reduction of Energy Performance
Gap
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Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a

building stock level using actual energy consumption data — making building energy simulations a more reliable tool 11
for nolicymakers.
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Conclusion and Recommendations

- Make sure that there are enough cases per
optimization parameter

- Make sure that the group is representative
* Prevent overfitting

* Avoid influential outliers because they will
have a significant influence on the end result

» This method does not aim to reduce the gap
between predicted and actual energy
consumption on an individual building level
but only on a building stock level.

Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a
building stock level using actual energy consumption data — making building energy simulations a more reliable tool 12
for nolicymakers.
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