Model Calibration at Building Stock Level with Machine Learning*

Paula van den Brom

Calibration Building Energy Simulations

Source: Manfren, M.; Nastasi, B. Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A Scalable Approach for Buildings. *Energies* **2020**, *13*, 621.

TUDelft

Calibration Building Energy Simulations

Calibration parameters

- Indoor temperature
- Assumed U-values
- Ventilation rates
- Infiltration rates
- Occupant Presence
- Domestic hot water

Energy Predictions on Buildings Stock Level

Source: Majcen, D., Itard, L., & Visscher, H. (2013a). Actual and theoretical gas consumption in Dutch dwellings: What causes the differences? *Energy Policy*, *61*, 460–471. doi: 10.1016/j.enpol.2013.06.018

ŤUDelft

Calibration Building Energy Simulations

$$E = \sqrt{\frac{\sum_{i=1}^{n} (Q_{theo_i} - Q_{act_i})^2}{n}}$$

Calibration parameters

	Lower bound	standard values	Upper bound
Indoor temperature setting	15°C	18°C	28°C
Rc value façade [units]			
Before 1965	0.19	0.19	1.3
Between 1965-1975	0.19	0.43	1.3
Between 1975-1988	0.43	1.3	2
Between 1988-1992	1.3	2	3
After 1992	1.3	2.3	3.5
Air change rate			
Natural ventilation	-90%	0%	+300%
Mechanical exhaust ventilation	-90%	0%	+300%
Mechanical exhaust ventilation	-90%	0%	+300%
demand based			
Balanced ventilation system	-90%	0%	+300%
with heat recovery			
Domestic hot water			
consumption			
dhw floor area <50m2	-39%	0%	286%
dhw 50< floor area <75 m2	-55%	0%	182%
dhw 75< floor area <100 m2	-65%	0%	142%
dhw 100 < floor area <150 m2	-67%	0%	133%

Machine Learning Techniques

- Particle Swarm
- Surrogate model

Machine Learning Techniques

Particle swarm

Edgar Peña et al 2017 J. Neural Eng. 14 016014

Machine Learning Techniques

Surrogate model

Kim, S.H. & Boukouvala, F. Optim Lett (2019). https://doi.org/10.1007/s11590-019-01428-7

Reduction of Energy Performance Gap

Actual gas use 2010 [MJ]

Steady state simluation results before optimization [MJ]

Actual gas use 2010 [MJ]

Steady state simluation results after optimization [MJ]

Based on: P. van den Brom., L. Itard, H. Visscher. (2019). Calibration of building energy simulation models on a building stock level using actual energy consumption data – making building energy simulations a more reliable tool for policymakers.

11

Conclusion and Recommendations

- Make sure that there are enough cases per optimization parameter
- Make sure that the group is representative
- Prevent overfitting
- Avoid influential outliers because they will have a significant influence on the end result
- This method does not aim to reduce the gap between predicted and actual energy consumption on an individual building level but only on a building stock level.

ŤUDelft