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Install and forget

» PV systems can fail in many ways:

* Delamination, hotspots, connectors, ageing, hailstorms, etc.

» Sub-optimal PV performance can be detrimental for return-on-investment and
sustainability targets

» O&M is essential, but often, there are no clear signs if a system is malfunctioning or not

» Huge opportunity for data analytics and large-scale system monitoring
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How to quantify performance?

Cefic

* Yield per installed capacity (kWh/W)?

Driving Range | Number of gallons required to travel 1,000 miles

MODEL, TYPE GASOLINE NEEDED
Ellimn Leaf . 3 gallons
lectric motor
367 MPG" . ..
Elh“‘ﬁ",;‘ \;olt 5 gallons
| I
o EEEEE

electric-gasoline engine

230 MPG

Tayota Prius
Hybrid engine
51 MPG

20 gallons

Honda Accord
Gascline engine
21 MPG

=Combined eity and highway driving, Other cars’ MPG numbers are for ity driving only.
Mote; Fuel-efficiency figures vary depending on the specificatians of the car and other factars, Gallans are rounded up.
Saurces: Nissan; Gerveral Mators; Enviranmental Protection Agency  Photus; Gelly Images (Leaf), Reuters (vl Prius), Handa (Aczord)
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How to quantify performance?
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How to quantify performance?

Typical building applications vs. STC

* Non-optimal tilt and orientation

Low light conditions

Temperature effects

Partly shaded sites

Year-to-year variability

: TU/e



How to quantify performance?

cefics
Vield perinstallad oW W

* Performance ratio (PR)
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Performance ratio

Tool for performance assessment:

Psite measured

P * Gsite measured
STC G
STC

PR =
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Performance ratio

Tool for performance assessment:

Psite measured
PR =

P * Gsite measured
STC G
STC

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.
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P * Gsite measured
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PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.
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Performance ratio

Tool for performance assessment:

Psite measured

P * Gsite measured
STC G
STC

PR =

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
multiple PV systems
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Performance ratio

Tool for performance assessment:

p.. < Measured power
site measured

P * Gsite measured
STC G
STC

PR =

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
multiple PV systems
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Performance ratio

Tool for performance assessment:

p < Measured power
site measured

PR =

Porc * (M) & STC power corrected with
Gsre actual irradiance

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
multiple PV systems
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Performance ratio

Tool for performance assessment:

Psite measured

PR = Psite measured — Gsite measured
PSTC % (Gsite measured) M
Gsre Gsrc

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
multiple PV systems

13

TU/e



Performance ratio

Tool for performance assessment:

Psite measured

PR = Psite measured _ Gsite measured __ Nsite measured
PSTC * (Gsite measured) PSTC Nstc
GSTC GSTC

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
multiple PV systems
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Available data:

On site:

Psite measured [W]
- Site details (Tilt, orientation,

etc)
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Performance ratio

Tool for performance assessment:

Psite measured

PR = Psite measured _ Gsite measured __ Nsite measured
PSTC * (Gsite measured) PSTC Nstc
GSTC GSTC

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
multiple PV systems
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Available data:

On site:

Psite measured [W]
- Site details (Tilt, orientation,

etc)

At TU/e Solar Measurement Station:

- Irradiation data (GHI,DNI, DHI)
- Solar position (Azimuth, Zenith)




Performance ratio

Tool for performance assessment:

Psite measured

PR = Psite measurea _ Gsite calculated _ Tsite measured
Psrc * (Gsite measured) Pstc Nstc
Gsre Gsrc

PR is originally invented to be able to assess the quality of the
modules. Typical values: 0.7 - 0.9.

It compensates for the effect of different irradiance conditions,
but still depends on other variables, such as:
Temperature, Degradation, Incident angle, Spectral properties etc.

We intend to use it to compare real life on-site performance of
CIGS and C-Si.

Available data:
On site: At TU/e Solar Measurement Station:
Pite measured [W1] - Irradiation data (GHI,DNI, DHI)
- Site details (Tilt, orientation, etc) - Solar position (Azimuth, Zenith)
GSI'te calculated

16
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Visualization

Analemma Daily sun path

<— Sun position at noon in the
summer

nin the

.

nter
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Visualization

Analemma Daily sun path

<+ Sun

position at
3 PMin the
summer

winter
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Visualization

Analemma - PR

Analemma
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7.76 | PR in function of sun position
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Visualization

Analemma Analemma - PR on a shaded site

Si_010 | Dist. to SMS(km)=14.4 | PR in function of sun position

X =
: 08
2 I
07
30 &
— 4 06
g
£
]
N
c 50
g
w
60
70

-150 -100 150
SunAzwmu(h(deg)

20 TU/ e




Visualization

Analemma Analemma - PR on a shaded site

Si_010 | Dist. to SMS(km)=14.4 | PR in function of sun position
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Visualization

Analemma Analemma - PR on a shaded site
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Evaluate datapoints without local shading \

] 8

SunZenith(deg)
8

PR =

Si_010 | Dist. to SMS(km)=14.4 | PR in function of sun position

‘I_ o 0o
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Psite measured
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Psrc Nstc
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Shade-free at noon

Shade-free in the morning

Shade-free in the evening

Training

Training points and classification
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Conclusions

» The proposed method is scalable and is ready to be integrated in automated workflows

e Works with only data that is commonly available
* No human intervention needed

» Support vector machines (SVM) are powerful for pattern detection in problems with
geometrical features

0 0
Measured shade Predicted shade
S 20 - S 204
B >
£ 40 - £ 40
T =
3o 3 o
c g S c 604
a “ @
801 (a) 801 (b) L 4
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

SunAzimuth (deg) SunAzimuth (deg)

s TU/e



ar Energy 174 (2018) 1068-1077

Contents lists available at ScienceDirect =
I SOLAR
|ExFRGY :
a n O u Solar Energy ; i
[ )
journal wWww. 8lsavier.com/
An unsupervised method for identifying local PV shading based on AC
power and regional irradiance data £
A. Bognar™*, R.C.G.M. Loonen®, RM.E. Valckenborg”, J.1.M. Hensen®
. e o wenenmas
o gy ApReaton Cenre. (SEAC), Hgh Tec Conpus 21, Echonen, e Neeriands
ARTICLEINFO ABSTRACT
[— Moritord poseer outpa data of photavliaic (PV) installafions s incressingly weed for purpeses sich as falt
P dectection s performance stislics of disbuted PV aysteras. The valu of such datmcts can incremse s
S a

rificanely when they are paired with Enformation sbowt local imadiance ond shading conditiors, capecially in

sppor v chos rhan emviroaments. Howerer, onite imafiance measiremens are seldom performed for small or medium.
mulation sized rocftop PV installstions. This paper opeses norel maihod 1o idemily locally shaded periods f PV
St orcasizg Ensallations, sing only messured Al sboct thesies e

module 6, orientation and aominal power) a inpuis. The propossd thres-siep method uses machine lewrning
technigues and a grey-bax BV performance prediction model to classify the visible sky hemisphere of a PV
installation to absiricted and unobsiracied aress. Detailed resslis of » moderately shaded mesidentisl BV site in

26

the abawen 1o llastrate the of the method. Finally, a saccemsfil comparison
w

with
s Mseraeed.

and

1. Introduction

1n 2017, almost as much solar was Installed 1n one year (9.1 GW)
as the world had installed in tatal by 2012 (100.0GW). This led to &
total global solar power capacity of over 400 GW in 2017 (Solaromw,
Eurpe, 2018). In Europe, more than 44% of the new Installatioas In
2017 were an rooftops where shading effects of the urban environment
are not always avokiable, Wheress In early PV applications sites were
carefully selected to be as shade-free as possible, It s expected that with
the decreasing prices of PV systems and the spread of new Bullding
Integrated PV (BIPY) applications, P will increasingly be imstalled on
surfaces where the effect of shading Is of considerable Importance
(Zomer et al, 2016; Zomer and Ruther, 2017).

Cloud-based monltoring services are routinely used to record the
power output of distributed PV systems (Soldrzano and Egido, 2013). Tn
Isa
substantial potential to exploit such recorded power measurements,
both In research and for quality assurance of commercially installed
systems. The value of this data can be increased by Creating a compu-
tational rearntation of the same PV ste, allawing for side by-side
comparisons between the measured and expected performance of the
system. However, because plane-oFamay Imadiance measirements at

- Comresponding sathar.
Email adiresz: 3 begn

hitpc//doi.org/10.1 016/} solener. 2014,

small or medium-sized PV plants are seldom performed (Nespolt and
Medict, 2017), it 15 difficult to comelate PV output with actual site-
specific Imadiance conditions. Due to this information mismatch in
relation to local shading conditions, causal relatianships between
systemy/site conditions and PV POWer output are hard to establish,
which diminishes the value of these datasets.

PV monitaring systems usually record output in terms of the in-
stallation's AC power. This means that the Influence of Fower systems
such as inverters and coaverters needs to be taken Into account In
subsequent analyses. Lack of information about the charactertstics of
these power systems can be a significant source of uncertainty n PV
performance analyses. An additional challenge s that, depending on
the architecture of the power systems of a PV Installation, the reduction
tn output due to (partial) shading Is not inearly related to the shaded
fraction. Uncertainty in the knowledge of the shading conditions of 3
specific PV site can therefore cause disproportionally Large prediction
ervors espectally If the power system of the BV si X
modeled explicily. To determine If a PV system 15 operating as ex-
pected, it 1 therefore of high Importance to have an accurate estimate
of when and to what extent a site Is shaded. This need for detecting
Iocally shaded periods of PY Installations has been recognized in three
different aress:

00
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00380925
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TRAINING PERIOD

PREDICTION PERIOD

Solar position Environmental Solar position Environmental
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GHI, DHI, DNI
(=
Pac mess] Measured AC Pac rmos |
3 =]
power input e
\ 4
L\ \i v \i Trained
Clear & overcast sky Clear sky SVM
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A T g g
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PV model grey - box 1] glz e
v SVM PV model PAC meas A J
Fitted hadi plgﬁ__
params.: Shaging psim
model PI>0.8
Ecomb i ?
comb lin

t N: Training point label = shaded
Y: Training point label = unshaded

2. TRAIN SVM SHADING MODEL

1. FIT GREY-BOX PV MODEL 3. PREDICT LOCAL SHADING
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c-Si sites
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CIGS sites
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