...brings concepts to life

'Thermal Predictive Algorithms for Smart Readiness of Districts Heating'

Method Development and Implementation at TU Delft District Heating Grid

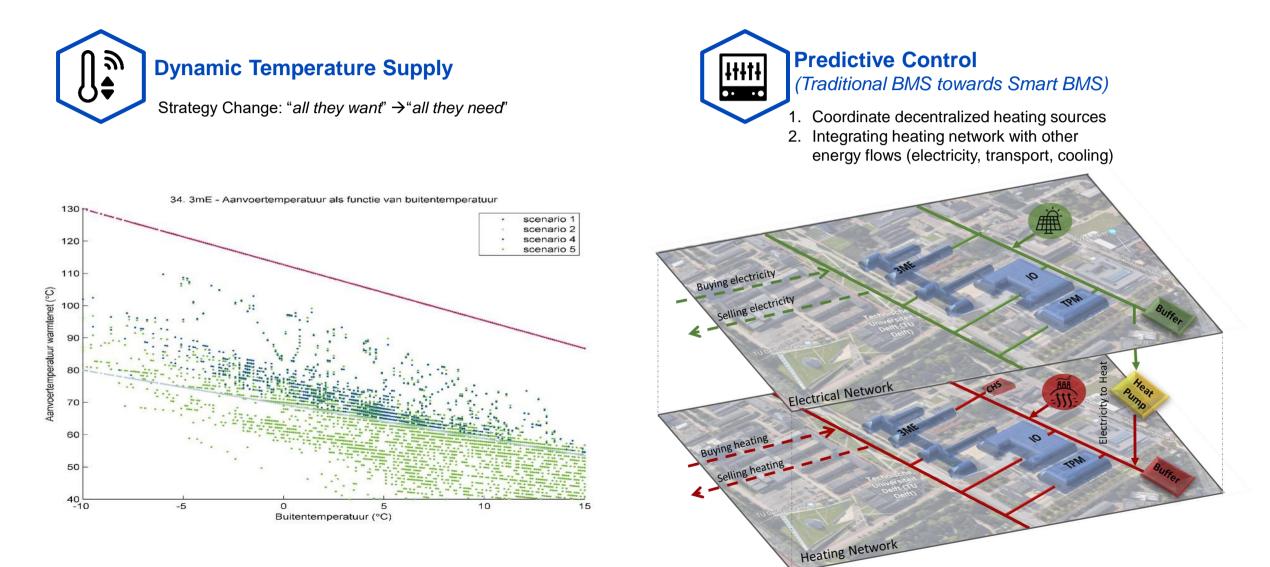
MSc. Cristina Jurado López, Energy Specialist cristina.jurado.lopez@deerns.com

TU Delft Symposium Smart Buildings Friday 7th February 2020

Smart Grid Innovation Programme ('Innovatieprogramma Intelligente Netten' - IPIN)

Transforming the traditional TU Delft heating network towards a low carbon heating network

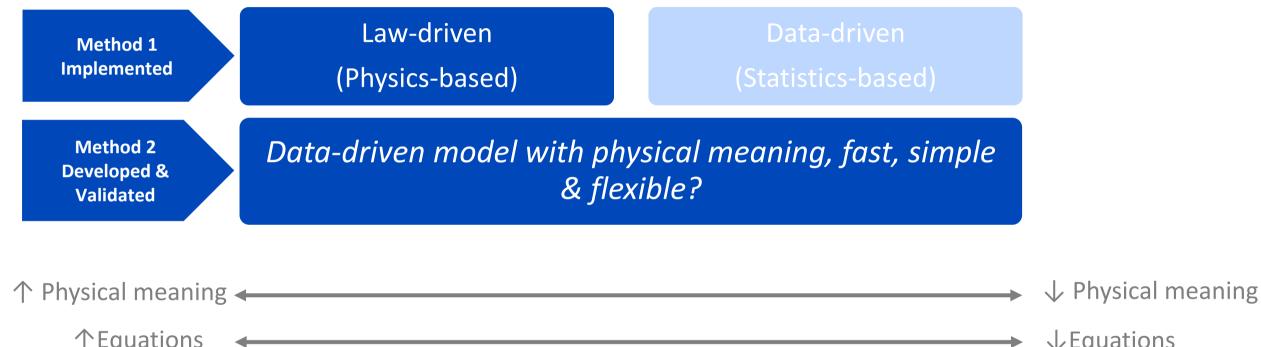
Solution

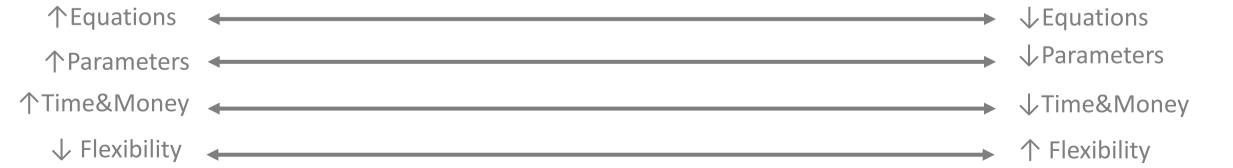


How to transform traditional BMS into Smart BMS? Existing Prediction Model Techniques

Law-driven	Data-driven
(Physics-based)	(Statistics-based)

How to transform traditional BMS into Smart BMS? Existing Prediction Model Techniques

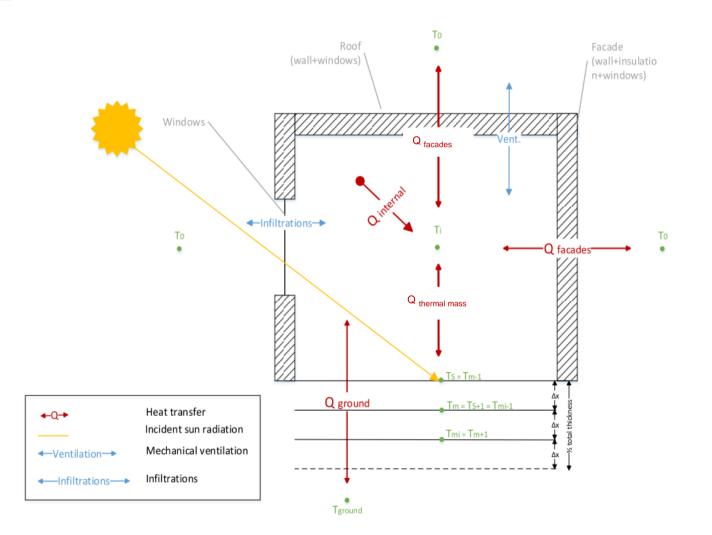




De¢rns

Physics-based Model (LEA)

Method 1 Implemented



Thermal balance during heating mode

Method 1 Implemented

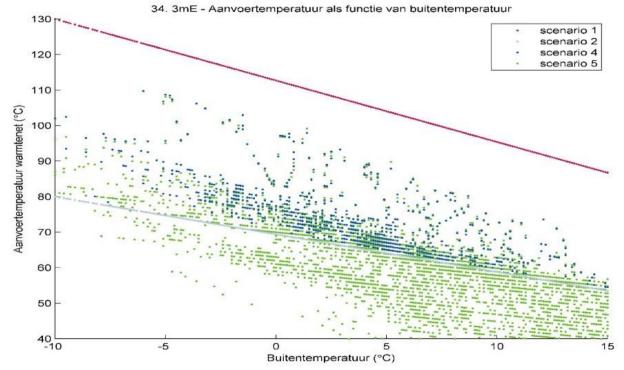
Results Method 1

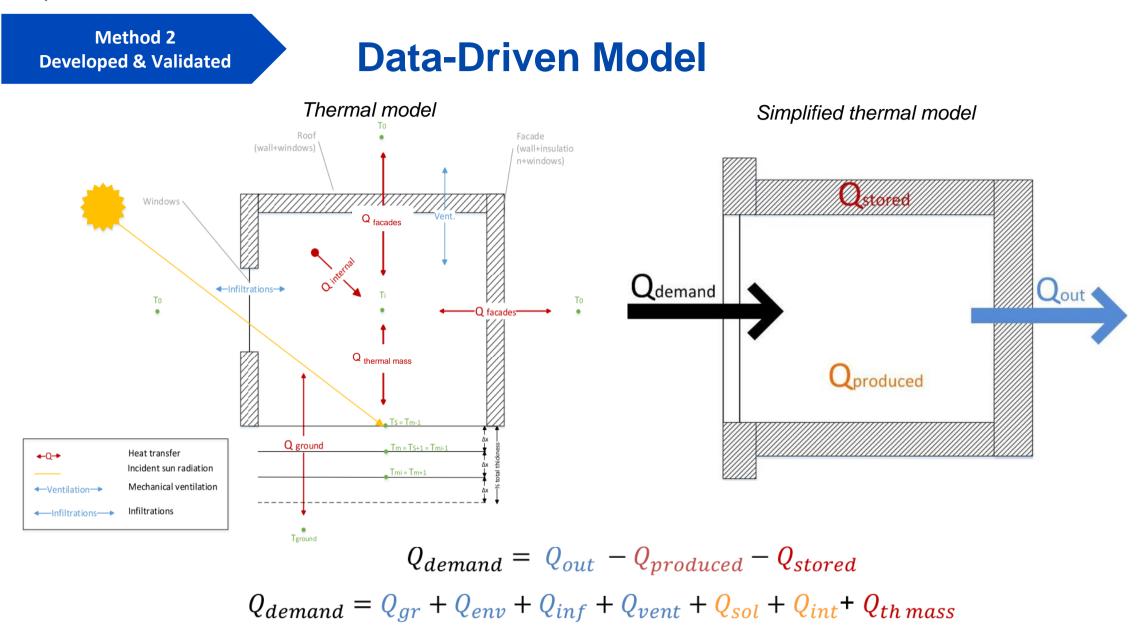
Results

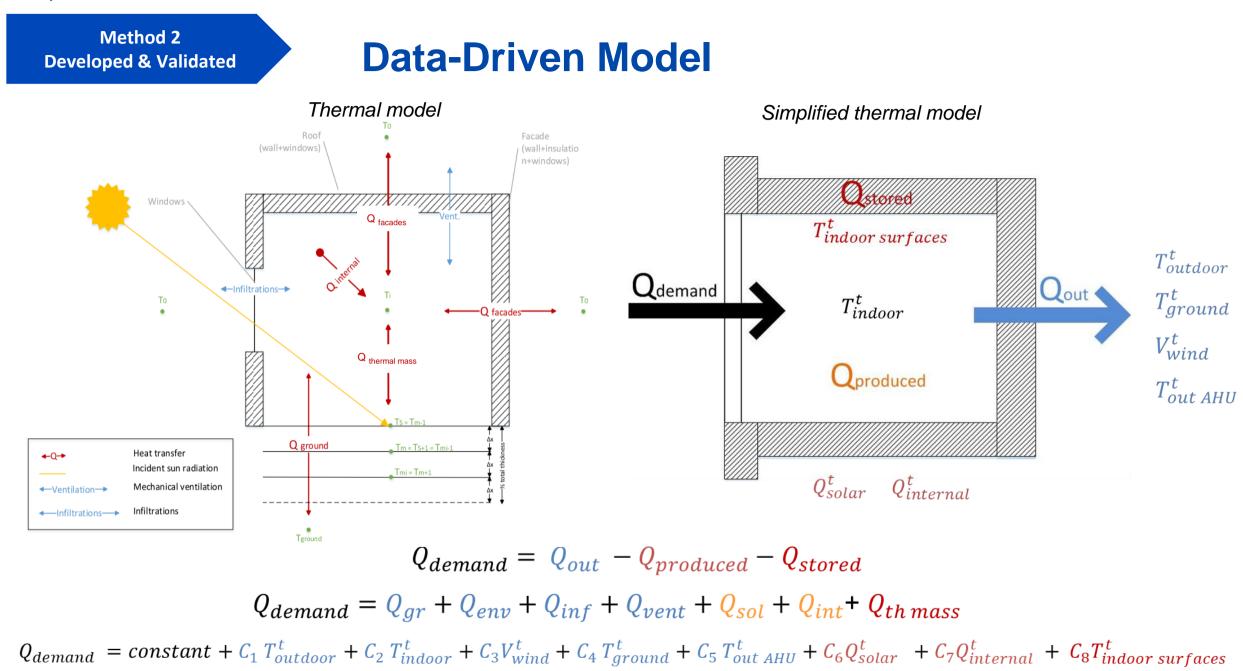
- Most of the time flow temperature (far) below 80 oC
- Enabling integration **geothermal** energy at TU Delft campus
- Increasing the use of **Combined Heat & Power** due to low return temperature

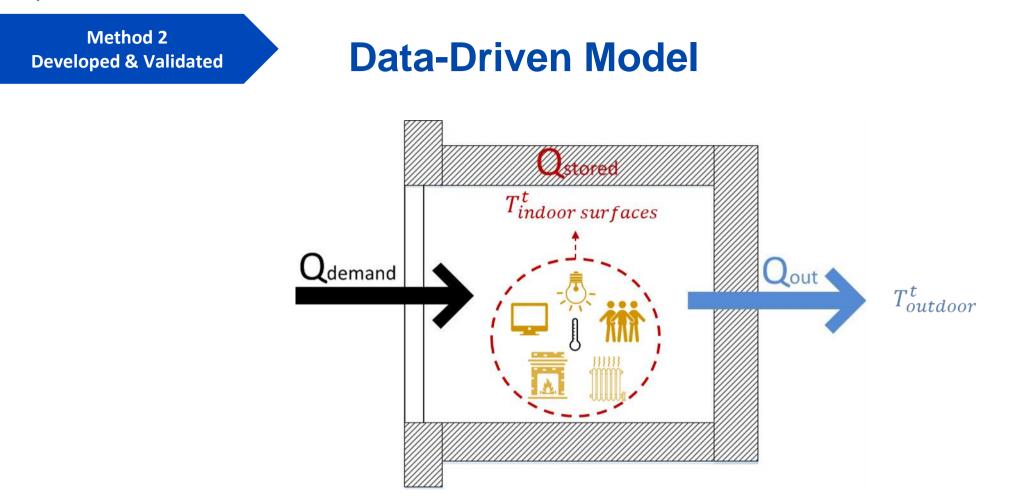
Challenges

- Complex for large scale implementation (> 200 parameters to estimate for 20 buildings)
- **Complex programming** (Different language between BMS and coupling of different hardwares)
- Low flexibility to introduce changes (building, installations, surroundings) → re-programming required









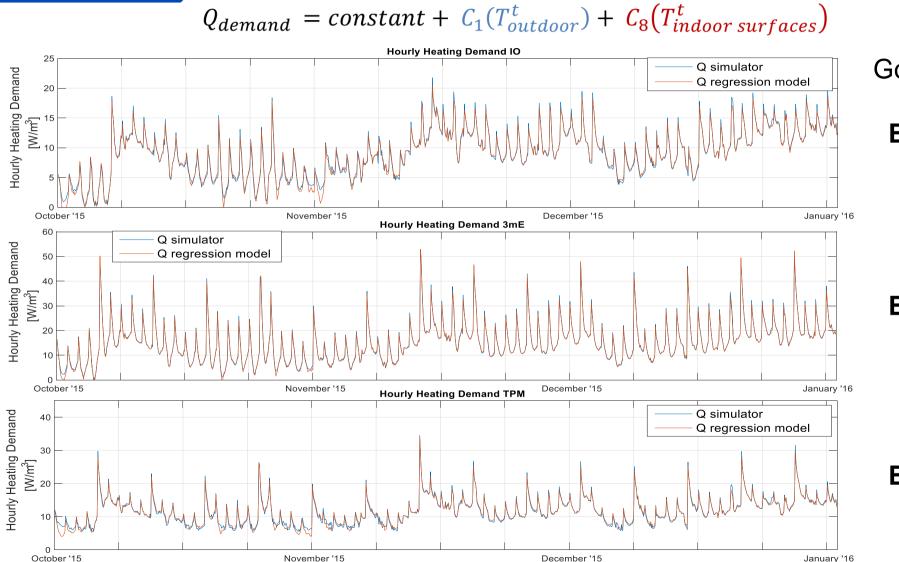
 $Q_{demand} = constant + C_1(T_{outdoor}^t) + C_8(T_{indoor surfaces}^t)$

Able to predict with high accuracy unknown situations

Deerns

Method 2 Developed & Validated

Results Method 2



Goodness of the fit Building 1: 97%

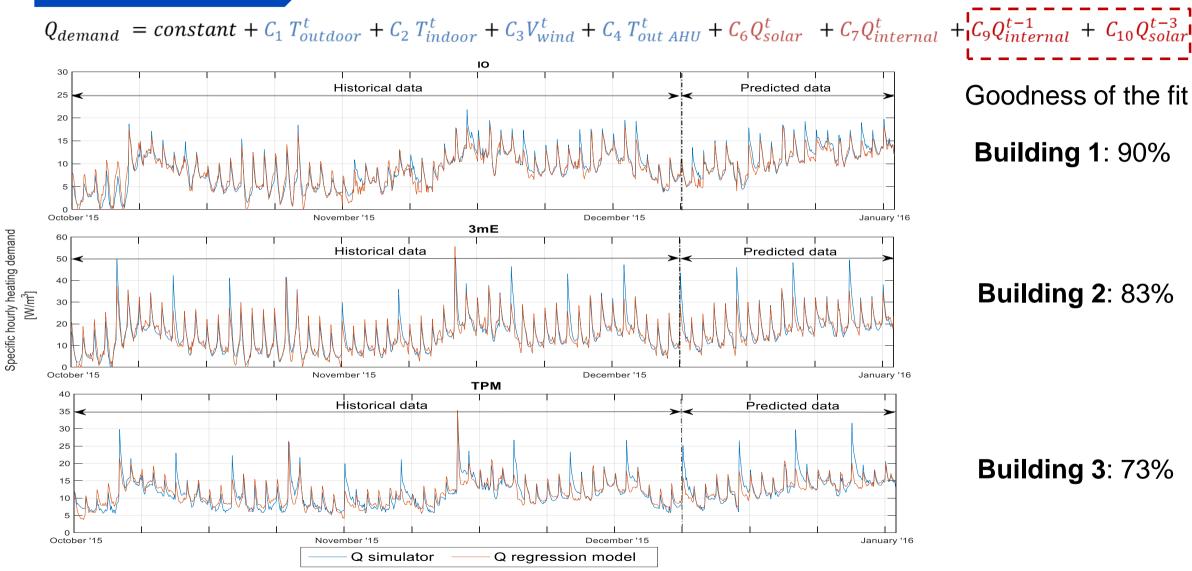
Building 2: 99%

Building 3: 96%

Fitting profile of the multivariate regression model for the specific heating demand prediction defined by equation (2) for IO (above), 3mE (middle) and TPM (below), respectively. Data set: weekdays during opening hours from 5th October 2015 until 14th January 2016.

Method 2 Developed & Validated

Results Method 2



Fitting profile of the multivariate regression model 2 based on the data set October-December 2015 for IO, 3mE and TPM, respectively.

Method 2 **Developed & Validated**

Results Method 2

Building 2: 83%

Building 3: 73%

Fitting profile of the multivariate regression model 2 based on the data set October-December 2015 for IO, 3mE and TPM, respectively.

Methods Comparison

	200/2	1/2	2/12		10/1
				~1/1	
	Simplicity	Less errors	Time saving in calibration & implementation	Physical meaning	Flexibility
Law-Driven model	>200 variablesComplex to detect relations	- Introduction errors (parameters estimation)	 Inventory & calibration Programming interaction with other softwares 	+ Physical meaning	- Complex to introduce new physical relations with 'unknowns'
Data-Driven model	+ <10 variables - Large data set (>1 year)	 Introduction errors (no physical meaning) 	+ Can be automatized + introduced in BMS	- No physical meaning	- Difficult to introduce physical meaningful parameters
Developed model	+ 2-6 variables - Small data set (<2 months) + Simple to detect relations	+ No introduction errors (all 'unknowns' accounted)	+ Can be automatized + introduced in BMS	+ Physical meaning	+ Easy to introduce any physical meaningful parameters

https://tvvlconnect.nl/thema/duurzaamheid-circulariteit/documenten/1711-eenvoudige-voorspellende-algoritmes-om-wijken-klaar-te-maken-voor-slimme-verwarming

Would you like more information? Contact me!

Cristina Jurado López Energy Specialist <u>Cristina.jurado.lopez@deerns.com</u> +31 6 50 16 34 27