

Low temperature heating for existing dwellings

The LT ready project

Content

- 1. The aim of the LT-ready project
- 2. Why this LT-ready project
- 3. What we did in the LT-ready project
- 4. Some results of the LT-ready project
- 5. Lessons learned and recommendations

The aim of the LT ready project

Determine the "LT-readiness" of existing dwellings and if the dwelling is not LT-ready which measures are needed to make a dwelling ready for low temperature heating*

* Low temperature heating is in this project defined as 55 °C

Why LT-ready?

Energy saving

Why LT-ready?

Energy saving

More important:

Potential to switch from fossil fuel to renewable energy sources

TUDelft

14-10-2021 7

Verse lucht

Afvoer

Why this research?

Research context

Haarlem – Garenkokerskwartier & Ramplaankwartier – private homeowners Utrecht & Amersfoort – Social housing

The LT-ready research

- Which renovation measures are already taken and why?
- Analysis of (innovative) renovation materials and techniques
- Pilot homes
- Measurements in homes with supply temperature 55 °C
- Analysis LT-readiness of homes
- LT-ready tool

Results – renovation and energy saving measures private homeowners, Haarlem

- 1. The most common renovation measure is the replacement of single glass into high efficiency double glazing
- 2. Roof insulation from the inside in many homes
- 3. 60% of respondents is planning to apply floor insulation
- 4. A large part of the residents also indicate that they would like to insulate the facade, but that is a long term plan because they do not know how to approach this.
- Most participants set the thermostat to 20°C during the day and apply a night reduction of 4°C during the night
- 6. The upper floors of the homes are often not or only moderately heated **TUDelft**14-10-2021

11

Results – which renovation measures, why and how people use their house

People mentioned that they want to renovate to:

- 1. reduce energy demand
- 2. Increase comfort
- 3. To switch from gas as a heating source to a non-fossil fuel energy source

Reasons why they didn't execute the renovation measures yet:

- 1. Not sure which measures are needed
- 2. Afraid for moisture problems
- 3. Lack of budget
- 4. Lack of time

Analysis (innovative) renovation materials and techniques

- 1. Insulation value and energetic performance;
- Costs and costs to be expected in the (near) future; 2.
- 3. Potential of the material / product for integration integratintegratintegration integration integra a circular raw materials cycle;
- 4. Practical handling during application / execution;
- Architectural quality; 5.
- Comfort and health. 6.

WP3 - stand der techniek en innovaties per categorie

	4.2.4 Praktische nanteerbaarneid bij aanbre	ingen / uitv	oering	19
1 Inleiding	4.2.5 Architectonische kwaliteit			19
2 Methodo	4.3 Rockwool voorzetgevel			19
2 Methode	4.3.1 Isolatiewaarde en energetische presta	itie		19
2.1 Inventarisatie	4.3.2 Kosten en in de (nabije) toekomst te v	erwachten	kosten	19
2.2 Key Performance Indicators	4.3.3 Potentie van het materiaal / product vo	oor inpassir	ng in een circulaire	
2.2.1 Isolatiewaarde en energetische presta	grondstoffencyclus	-	-	19
2.2.2 Kosten en in de (nabije) toekomst te v	4.3.4 Praktische hanteerbaarheid bij aanbre	ngen / uitv	oering	20
2.2.3 Potentie van net product voor circular	4.3.5 Architectonische kwaliteit			20
2.2.4 Praktische hanteerbaarneid bij aanbre	4.4 Rockwool RockRoof Sidefix dakisolatie			20
2.2.5 Architectonische Kwaliteit	4.4.1 Isolatiewaarde en energetische presta	ıtie		20
2.5 Categorisering	A A A Master as is de /achiet testesset to		kosten	20
3 Isolatiematerialen en basisproduc			ig in een circulaire	
3.1 Steenwol	5.4.5 Architectonische kwaliteit			20
3.2 Glaswol	6 Toenassingen houtvezel	23	pering	21
3.4 Vias & Hennen	7 Teeneesingen vlas hennen ete	22		21
3.4 Vias & Heililep	" 7 Toepassingen vias, hennep, etc			. 21
3.6 Cellulose	8 Toepassingen cellulose	24		21
3.7 Zeewier	8.1 iCell Error! Bookmark not	defined.		21
3.8 Mycelium	9 Toepassingen zeewier	24	kosten	21
3.9 Kurkisolatie	10 Toepassingen mycelium	24	ig in een circulaire	
3.10 Katoenisolatie	11 Toepassingen metisse en gerecycled katoen			21
3.11 Geextrudeerd/geexpandeerd polystyre	12 Toepassingen EPS	24	pering	21
3.12 Polyurethaan- en polyisocyanuraatsci		24		21
3.13 Resolschuim				21
3.14 Vacuumpanelen/Vacuumoplossingen	13 Toepassingen polyuretnaan	24		21
3.15 Aerogels	14 Toepassingen PIR	24	kosten	21
3.16 Calcium silicaat	14.1 Kingspan Wall-in-one		ig in een circulaire	
3.17 Perlite	14.2 Isowall.nl, woningisolatie in 1 dag (challenge)			21
3.18 Vermiculite	15 Toepassingen resolschuim	25	pering	22
3.19 Folies	15.1 StoSystain X - herbruikbare gevelisolatie (challenge)			22
4 Toepassingen steenwol	15.2 Kingspan Kooltherm K5 Buitengevelplaat			
4.1 Rockwool RockSono voorzetwand	15.3 Kingspan Kooltherm K118 Binnenisolatie Element		koston	22
4.1.1 Isolatiewaarde en energetische presta	16 Toepassingen vacuum paneien		a in een circulaire	
4.1.2 Kosten en in de (nabije) toekomst te v	16.1 Patchwork van vacuum panelen en PIR (challenge)		ig in concluding	22
4.1.3 Potentie van het materiaal / product v	16.2 FORRO, een warme voering voor eik nuis (challenge)		berina	23
grondstoffencyclus	17. To an account spouwisolatie/Qavity (challenge)		,	23
4.1.4 Praktische hanteerbaarheid bij aanbre	17 Toepassingen aerogeis			23
4.1.5 Architectonische Kwaliteit	17.1 Bluedec			. 23
4.2 Rockwool Inblaaswol spouw	18 Toepassingen silicaten	29	kosten	23
4.2.1 Isolatiewaarde en energetische presta	18.1 Slentite		ig in een circulaire	
	19 Toepassingen folies	29	-	23
	20 Systeemtoepassingen en overig	29	pering	23
	20.1 Steenstrippaneel op een isolatie naar keuze (challenge)	30		
	20.2 Iso-Skin (challenge)	30		
	20.3 EWS External Wall System (challenge)	30		
	20.3.1 Isoleren met nanotechnologie (challenge)			

4.2.2 Kosten en in de (nabije) toekomst te verwachten kosten

arondstoffencyclus.

4.2.3 Potentie van het materiaal / product voor inpassing in een circulaire

18

19

Pilot dwellings*

* To protect the privacy of the people in the research these pictures are not the exact pilot dwellings we measured but they reflect the type of dwellings

Measures Pilot dwellings

- Balanced ventilation system with heat recovery
- Demand-driven ventilation system (CO2)
- Improvement air tightness
- Cavity insulation
- Façade insulation
- Replacement of window(frames)
- Roof insulation (inside)
- Floor insulation
- Replacement of front door
- Decentral ventilation system with heat recovery
- Radiator booster
 Delft

Mini PC

14-10-2021 16

С

Temperature

TUDelft

 CO_2

Gas use and outdoor temperature

U-value measurements

During the measurement period the desired temperatures are always achieved and the occupants felt comfortable

During the measurement period the desired temperatures are always achieved and the occupants felt comfortable

However we can **not** conclude that the dwelling is LT ready because the outdoor temperatures were relatively high during the measurement period

Plan B: Analyse LT-readiness dwellings – Dyanamic building energy simulation models (TRNSYS)

Definition LT-ready

- 'LT-ready' in this project means that the house can be heated with a low temperature, a maximum of 55 °C by using the current heat emitter systems such as radiators or underfloor heating.
- Renovating a house to level: 'LT ready' means that after renovation the house can switch from high temperature to low temperature (max 55 °C) heating while maintaining the current heat emitting system and maintaining similar indoor temperature level as achieved in the situation of high temperature heating.

Dynamic building energy simulation - Calibration

Analyse LT-readiness of dwellings – high versus low temperature heating

High temperature heating

Low temperature heating

Analyse LT-readiness of dwellings – different user profiles and climate years

Which aspects have influence on the 'LT-readiness' of a dwelling?

- Heat loss of a dwelling (e.g. insulation façade, floor, roof, type of glass, window frames, air tightness, ventilation)
- Technical aspects of the building
- Installed heating capacity of a dwelling (is there extra capacity?)
- Flow capacity of heating pipes
- Heating time of the dwelling (thermal capacity)
- Desired indoor temperatures
- Desired night temperatures
- Preferences of the occupants and building owners
 TUDelft

Impossible to conduct dynamic simulations for every dwelling

Detailed input is required which is difficult/time consuming to obtain, if standard assumptions are used there is no added value to dynamic simulations

Alternative:

ISSO 51

- Relatively simple calculation
- Most of the time the predictions are a bit stricter than the dynamic simulation results (depends a bit on the building and the assumptions)

Technical aspect – decision trees

Beslisboom vloer- of bodemisolatie

LT-ready tool

- Overview of new and existing renovation techniques including environmental impact & circularity
- ISSO 51 per room
- Decision trees: what is technical possible

<complex-block><complex-block>

Lessons learned LT-ready

- Definition is important
- It is important to not only look at capacity of the heating system but also at comfort
- Important to take the wishes of the occupants into account, this also influences which measure is the 'best' measure
- The installed over capacity of the system and the flow capacity of the pipes play an important role
- ISSO 51 is an acceptable alternative for dynamic calculations to indicate the LT readiness of a dwelling
- It is important to analyse the current comfort level
- It is important to look at individual rooms/zones
- More experience from practice is needed

With Thanks to:

Saskia Rutten;

Eric van den Ham;

Dora Vancsó;

Sabine Jansen;

Victor Ghering;

Martin Tenpierik;

Regina Bokel

Paula van den Brom

Analyse LT-readiness of dwellings – different user profiles and climate years

Analyse LT-readiness of dwellings – different user profiles and climate years

