

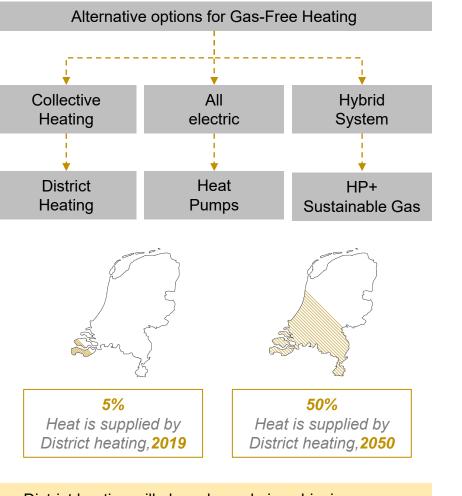
Energy Renovations for Lower Temperature District Heating

LT Ready Symposium

14 October 2021 | Prateek Wahi

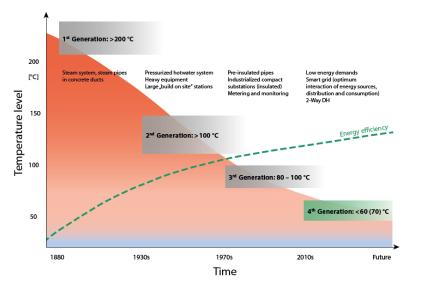
Background: The Dutch Case

11% CO₂ Emissions comes from the residential sector, 2018



90% of residential heating demands is satisfied by natural gas, 2018

Decarbonising the built environment by transition towards sustainable source of heating Making Transformation rate of 1.5 million 200,000 homes gas free homes / year Energy Renovations for District heating with lower integrating lower temperature temperature supply supply


Climate Agreement Goals : 2030

Why District heating?

District heating will play a key role in achieving energy transition goals

What is Lower Temperature District Heating?

Geothermal

Integration of renewable and

Third Generation : Traditional

Fourth Generation : Reduced

temperature supply of about

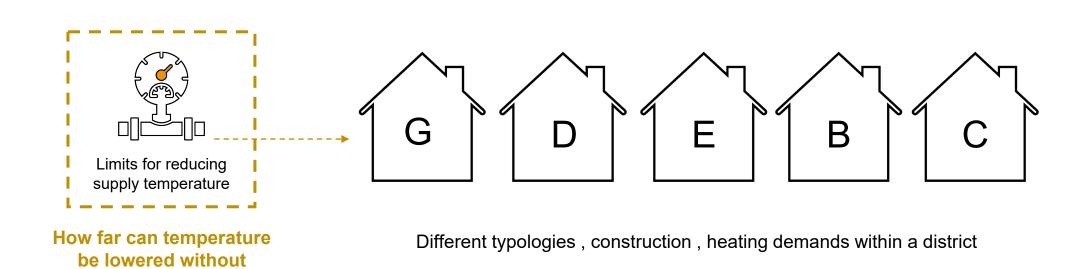
50°C

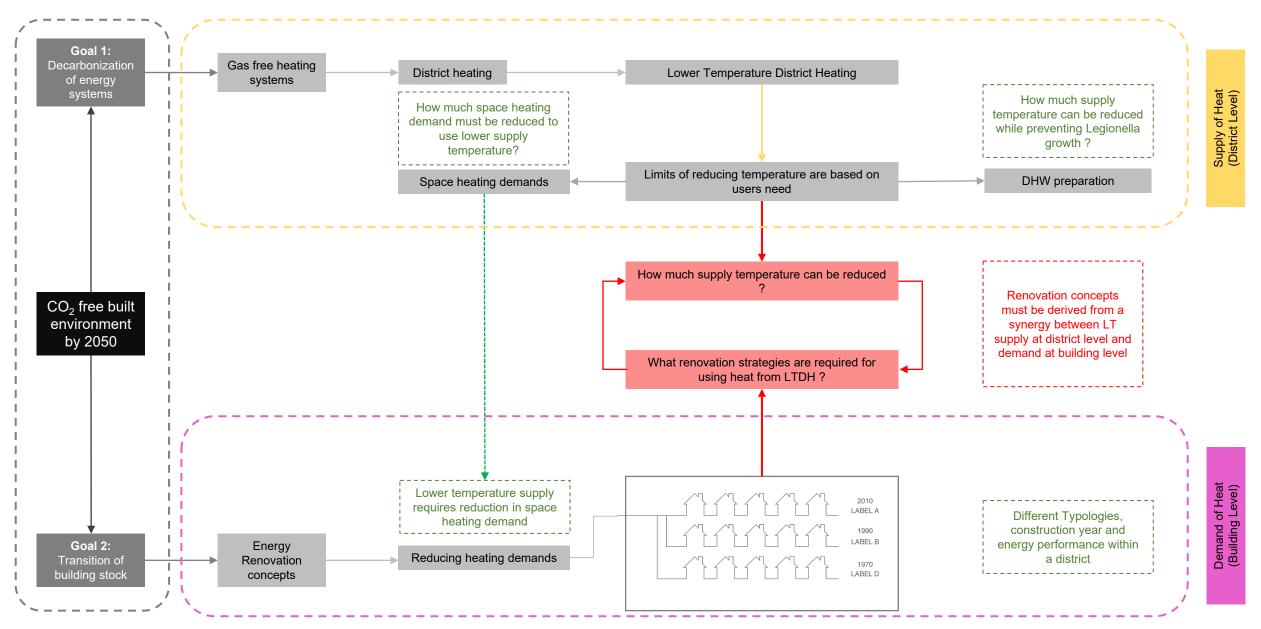
DH grids operate at 100 °C

Waste Heat

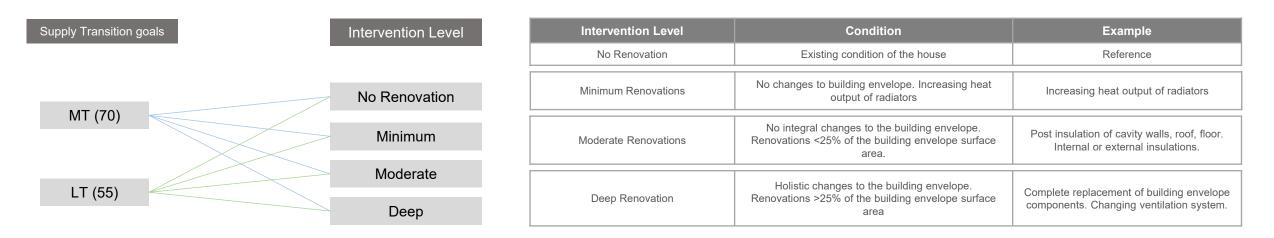
waste heat sources.

Potential to curb GHG emissions.


Renewable


Why Lower Temperature supply ?

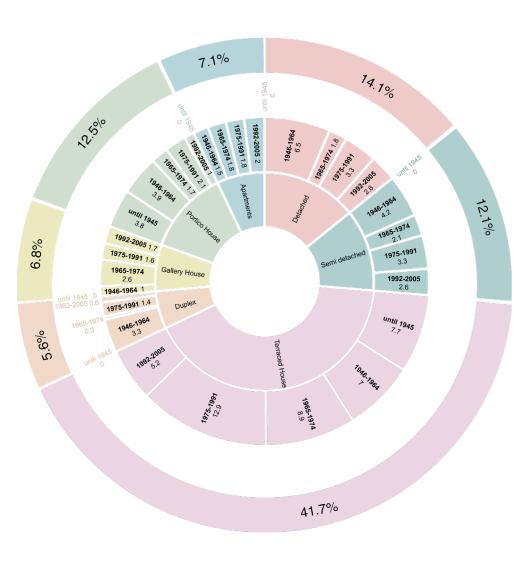
Based on direct us	se of heat for space l	neating and tap water				
High Temperature	Ta > 75°C	Direct use of heat	District Heating Level	Reduced heat loss in the pipe network	≥ 90°C High Temp. Supply	≤ 60°C Low Temp. Supply
Medium Temp.	55 ≤ Ta ≤ 75 °C	Direct use of heat. Heating of tap water Ta>65	<u> </u>	production and distribution	locally available	surplus resources
Low Temperature	25 ≤ Ta ≤ 55 °C	Direct use of heat with LT systems. Booster for tap water	Building Level			
Ultra Low Temp.	Ta ≤ 25 °C	Upgrading the heat for space heating and hot water		Better temperature B gradient	Better thermal comfort	Better indoor air quality



comfort loss?

Investigating renovations needed for low temperature supply scenario for a worst case reference example ?

Replacing existing radiators with LT Radiators

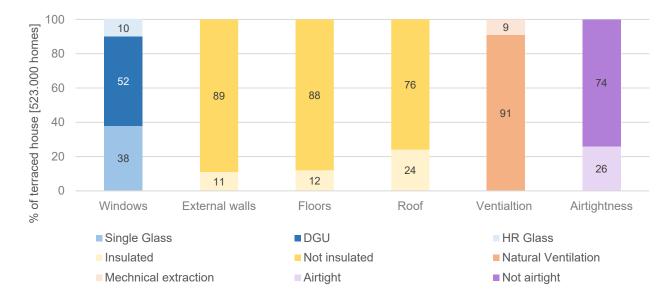


Internal Insulation

Replacement of building envelope

Image: homeserve.com; BCCA.com; insofast.com; Carl-peter Goossen Source: Bouwbesluit, 2021, Chapter 5; Kamari et al., 2018. 10

Post insulation of cavity wall



Preliminary studies : Terraced House

Sample size: 5 construction year and 2 location subtype : 10 reference.

Year of construction	Energy Labels / Energy Index
Until 1945	G (2.18)
1946-1964	F (2.49)
1965-1971	E (2.08)
1975-1991	D (1.64)
1992-2005	C (1.31)

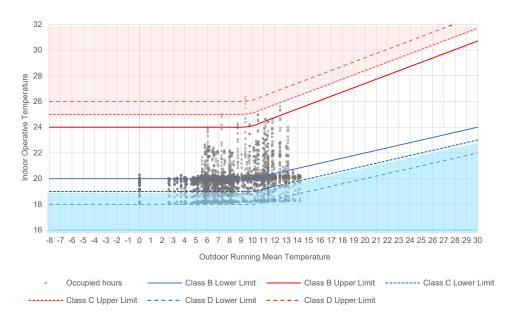
Terraced house : Current condition

	Criteria	Parameter	KPI	Unit	Description
supply Level	Lower Peak Demands	Supply Temperature	Exceeding hours of DH supply	%	% of hours peak demand exceeds lower supply temperatrue regime
Aiddne	Maintain lower supply and return temperature	Return temperatures	$\Lambda I = Supply_refurb$		% of hours ∆T (supply- return) is above 30K
Demand Level		Heating	Specfic Space heating demand	kWh/m2	Determine heating energy required to compensate heat losses
	Improving energy efficiency Improve thermal comfort	demand	Heat losses	W	To determine transmission and ventilation het loss
		Annual energy consumption	Total annual energy consumption	kWh/m2	Total energy conumed for space heating , DHW and ventialiton
		Existing heat emission system	Maximum radaitor power	W	To determine if radaitors can suffice heat losses under lower supply temperatrue.
		Thermal comfort	Hours too cold	%	% of hours too cold due to lower supply temperatrue

Testing with lower supply temperature

Lowering the supply temperature would also reduce the existing radiator power.

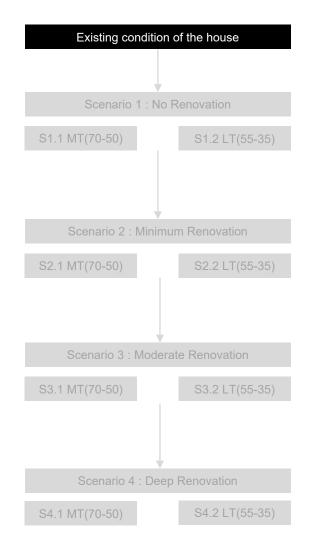
Effect of lowered capacity on peak demand can also be seen in the thermally uncomfortable hours.


Reduced Radiator power was calculated analytically with difference between supply and return temperatures as 20K

٠	Medium	: 70/50°C
٠	Low	: 55/35 °C

Key Performance Indicators for comparing strategies

	Criteria	Parameter	KPI	Unit	Description
Level	Lower Peak Demands	Supply Temperature	Exceeding hours of DH supply	%	% of hours peak demand exceeds lower supply temperatrue regime
Supply Level	Maintain lower supply and return temperature	Return temperatures	ΔT = Supply-return	%	% of hours ∆T (supply- return) is above 30K
Demand Level		Heating	Specfic Space heating demand	kWh/m2	Determine heating energy required to compensate heat losses
	Improving energy efficiency Improve thermal comfort	demand	Heat losses	W	To determine transmission and ventilation het loss
		Annual energy consumption	Total annual energy consumption	kWh/m2	Total energy conumed for space heating , DHW and ventialiton
		Existing heat emission system	Maximum radaitor power	W	To determine if radaitors car suffice heat losses under lower supply temperatrue.
		Thermal comfort	Hours too cold	%	% of hours too cold due to lower supply temperatrue


Thermal Comfort (ATG Method)

- Only living room was analyzed.
- Simulated for winter season as specified by ISSO 32, October April
- Occupancy : 7:00-23:00
- Total Occupied hours : 3604
- Thermal comfort limit (class C) : Maximum 15% (540 hours)

Dynamic Simulation Model

An aggregated or lumped model. Energy due to hot water preparation and cooking were not considered. Suitability of lower temperature supply was assessed based on energy delivered by heating systems, radiator power and thermal comfort

Typical Terraced intermediate house

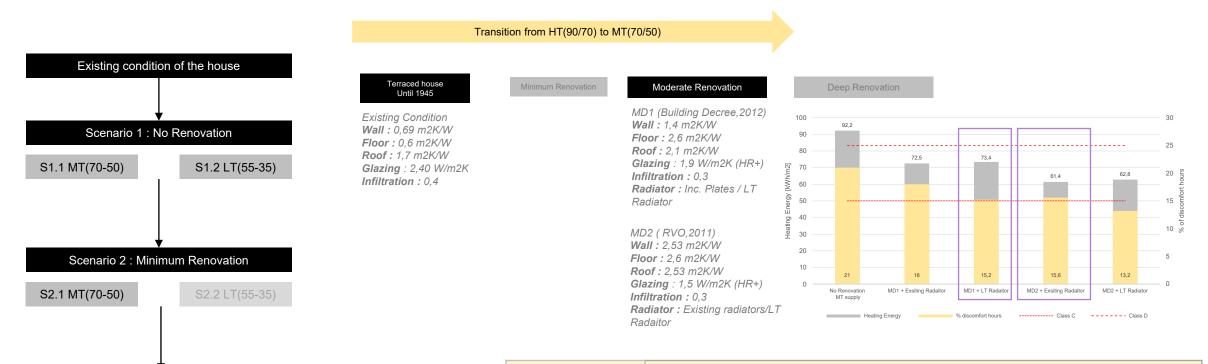
Terrace	d house
Subtype	Intermediate
Construction Year	1938
Renovation year	2020
Usable Area	90m ²
Heat generation	Gas boilers
Original supply	90° C

Bedroom 1 Area: 11,41 m^{2,} Heated : Yes, ------Type 11 (1900X500mm)

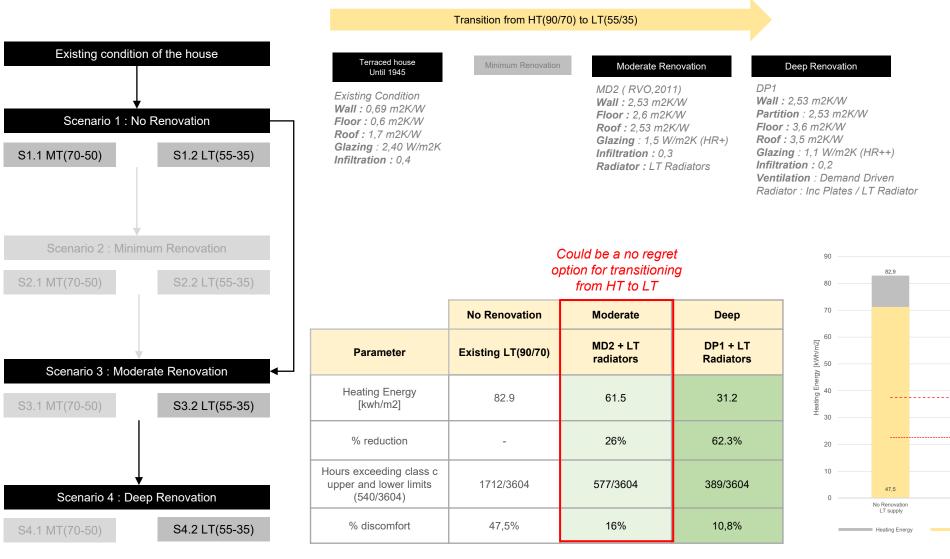
Bedroom 2 Area: 6,59 m²·Heated : Yes, ------Type 11 (1900X400mm)

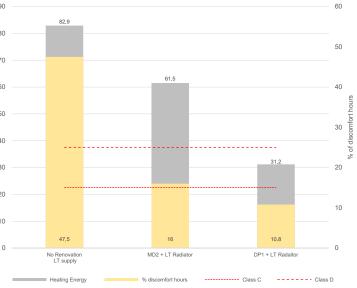
Bathroom Area: 1,13 m^{2,} Heated : Yes, Type 10 (600X900mm)

Living Room ... Area: 18,40 m^{2,} Heated : Yes, Type 21 (1900X400mm) Type 10 (500 X 900mm)


Attic Area: 29.10 m² Heated : No Bedroom 3 Area: 6.0 m² Heated : Yes, Type10 (600 X900mm) Corridor . staircase Area: 2,90 m² Heated : No, Kitchen Area: 6.31 m² Heated : Yes, Type 21 (600X900mm) Toilet Area: 0,85 m²Heated : No, Entrance foyer, Staircase Area: 6,09 m² Heated : No Crawl Space

Renovation strategies for different intervention level


Component	Existing	Minimum Renovations	Moderate Renovations		Deep Renovations			
			Strategy 1 (MD1)	Strategy 2 (MD2)	Strategy 1 (DP1)	Strategy 2 (DP2)	Strateg (DP3	
Radiators	HT Radiators (90/70)	Existing Radiators Increasing convector plates LT Radiators	Existing F Increasing cor LT Rac	nvector plates		LT radiators		
Source	-		Bouwbesluit, 2021	RVO,2012	-	NTA 880	0,2021	
External Wall [R-Value]	0.69 m ² k/W		1.4 m²k/W	2.53 m ² k/W	2.53 m ² k/W	4.7 m ²	²k/W	
Floor [R-Value]	0.638 m²k/W		2.6 m ² k/W	2.53 m ² k/W	3.6 m ² k/W	3.7 m ²	²k/W	
Roof [R-Value]	1.735 m²k/W		2.1 m ² k/W	2.53 m ² k/W	3.5 m ² k/W	6.3 m ²	²k/W	
Glazing [U-Value]	DGU 2.40 W/m ² k		DGU 1.9 W/m²k	HR+ 1.5 W/m²k	HR++ 1.1 W/m²k	HR- 1.1 W,		
Infiltration [ach]	0.4		0.3	0.3	0.2	0.2	2	
Internal Partition [R-Value]	0.24 m²k/W				2.53 m ² k/W	4.7 m ²	²k/W	
/entilation system	Natural Ventilation				C2 Demand driven	C2 Demand Driven	Balanced HR	


Scenario 3.1 : Moderate Renovation for MT

Scenario 3 : Moderate Renovation							
S3.1 MT(70-50) S3.2 LT(55-35)							
Scenario 4 : Deep Renovation							
S4.1 MT(70-50) S4.2 LT(55-35)							

	No Renovation	Moderate Renovations				
Parameter	Existing MT(90/70)	MD1 + existing radiators	MD1 + LT Radiators	MD2 + Existing radiators	MD2 + LT Radiators	
Heating Energy [kwh/m2]	92,2	72,5	73,4	61,4	62,8	
% reduction	-	21%	20,4%	33,4%	32%	
Hours exceeding class c upper and lower limits (540/3604 hours)	757/3604	649/3604	548/3604	562/3604	476/3604	
% discomfort	21%	18%	15,2%	15,6%	13,2%	

What level of insulation is needed for a comfortably heated home?

For a pre-war terraced house (built before 1945)

Medium temperature supply from district heating.

Moderate renovation intervention can be coupled with changing radiator system.

Lower Temperature supply from district heating.

Moderate renovation with change in ventilation systems and radiators

Deep Renovation

Preparation for hot water

Next Steps

The renovation strategies must also be tested for environmental and economical feasibility.

Advanced simulation for testing the dynamic effect on return temperatures.

Extending the studies to other building types.

Integrating the process in a decision-making framework for identifying appropriate renovation strategies.

Energy Renovations for Lower Temperature District Heating

Thankyou for your attention

Prateek Wahi | P.wahi@tudelft.nl

