

Content list

Motivation and objectives

Solution development process

120 - 122

Prototype

Lessons learned

User

Technology

Performance

TUDelft Delft University of Technology

all the state of the state

Energy Use and Building Sector

- All new buildings must be nearly zero energy buildings by 31 December 2020
- Zero-Carbon Built Environment by 2050
- Clear ambition to refurbish the building stock

Energieagenda, 2016

The Delft Darmstadt München Facades Education Project

Existing buildings

- By 2050, 70% of the building stock
- Built under far lower energy and sustainability standards

Energy labels for non-residential buildings in the Netherlands in 2010 (<u>source: AgentschapNL</u>)

Glazing type distribution in the EU building stock – TNO-60-DTM-2011-00338 report (source: Glass For Europe. (2011). The 4 Future EU Energy Efficiency Plan. Brussels: Europe's Manufacturers of Building, Automotive and Transport Glass)

2ndSkin Project Objectives

Innovative, integrated façade technology

- Zero energy consumption (Null op de meter)
- Minimum intervention to the interior

Business Development

- Low cost
- Upscalling
- New business model of supply chain

User Aspects

- Renovation acceptance
- Monitor behaviour and energy use
- Improve interaction with new systems

Post-war, multi-family apartment buildings:

- Post-war 30% of residential building stock
- Bad energy performance and comfort
- High density, limited surface for renewable energy, limited financial resources
- Possibility to use the concept in more building types

ARCHITECTEN

2ndSkin Project Phases

Flagship 2014-2016

2ndSkin Project Phases

Flagship 2014-2016

Demonstrator 2016-2018

Scaler 2018-2019

2ndSkin Project Phases

Demonstrator 2016-2018 12

12 NOM

Scaler 2018-2019 180 NOM-ready

Flagship Mockup

Testing technical feasibility

2ndSkin Technical solution

- Remove existing windows
- Ventilation layer
- Wall insulation and new windows
- Cladding
- Roof insulation
- Heat-recovery ventilation
- PV panels

Households profiles

Different energy consumption based on demographic household type

Guerra-Santin, O., & Silvester, S. (2016). Development of Dutch occupancy and heating profiles for building simulation. *Building Research & Information*, 1-18. Retrieved from doi:10.1080/09613218.2016.116056

Energy Performance

Zero-energy target can indeed be met, for specific cases

Heating demand can be covered

12-apartment building zero-energy renovation Soendalaan, Vlaardingen, NL

Urban, architecture, Design Concept

- Post war (1952) district with identical blocks The project focuses on one block
- of 12 apartments

Existing building

Simplex construction system

Proposed renovation

KAW Architecten

External insulation

Window replacement u-PVC frames and Triple glazing panes.

Roof replacement with prefabricated panels

Remove and replace balconies

Remove and replace balconies

Building systems

New installation installed in an installation box on the balcony

Ventilation with heat recovery

Ground Source heat pump COP6

Building systems

New installation installed in an installation box on the balcony

Ventilation with heat recovery

Ground Source heat pump COP6

Zero Energy guaranty

Zero energy is guaranteed by the building services provider for 25 years

This is achieved with eliminating the demand

And on site energy generation

Realised renovation

Acceptance

Monitoring

Renovation

Monitoring, currently ongoing

Lessons learned

- Zero energy refurbishment is achievable with current technology
- Potential for product development
- Business model with energy contracting
- Role of the user
- Main restriction is the high investment

Potential for upscaling

- Stepped renovation (NOM-ready, no-regret)
- Prefabrication and integration
- Alternative building systems
- Low temperature
- Synergy between building and district

Refurbishment is an integral part of buildings' lifecycle and it going to happen.

The challenge is to realise this task efficiently and effectively

Thank you for your attention

