

Evaluating building-level parameters for lower temperature heating readiness

A sampling-based approach to address the heterogeneity of Dutch housing stock

Prateek Wahi

PhD Candidate Faculty of Architecture and the Built Environment, TU Delft

Cover: Image generated using Dall.E

Climate Agreement Goals : 2030

IEBB

Integrated Approaches for the Energy Transition in the Existing Buildings.

Project 1.5 : Collective Warmte

Develop methods to connect homes to mediumtemperature heat networks cost-effectively.

How do you select appropriate strategies for preparing a home for LTH?

Challenge 1 : Lack of lower temperature ready definition.

Challenge 2: Various renovation options: Decision paralysis

Challenge 3: Diverse dwelling require tailor-made solutions

Challenge 4:

Informational barrier due to lack of decision-support insights in the context of LTH

Wahi, P., Konstantinou, T., Tenpierik, M. J., & Marp; Visscher, H.. (2023). Lower temperature heating integration in the residential building stock: A review of decision-making parameters for lower-temperature-ready energy renovations. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2022.105811 3

Dwelling stock is heterogeneous, thus varying the renovation requirements.

Building by building measurement and analysis ideal solution but cost and time intensive.

Archetype-Based analysis,

- good for policy level,
- but introduce uncertainties due to averaging of variations

Limited insights for stakeholders who manages diverse portfolios on which dwellings are ready, which needs renovations and what should be prioritised.

Dwelling stock is heterogeneous, thus varying the renovation requirements. A possible solution is sampling based approach, but it has not been applied in the context of LTH readiness in the Netherlands. Traditionally there are archetypebased analysis,

- good for policy level,
- but introduce uncertainties due to averaging of variations

Objective:

To assess the LTH readiness of different dwelling types, while accounting for their inherent variations.

Methodological steps:

Determining the appropriate sample size that represent the variations within a dwelling type.

Identify the significance of building level parameters in assessing the readiness of a dwelling type for LTH

Covering 60% of the dwelling stock.

Category	Input Parameter	Units		
Geometrical	Orientation	0	-	
	Compactness-Ratio	-		
	Window-to-Wall Ratio	-		
	Position of Apartment*	-		
Fabric	Ground Insulation	m ² ·K/W		
	External Wall Insulation	m ² ·K/W		
	Roof Insulation	m ² ·K/W		
	Glazing Insulation	W/m ² ·K		
	External Door Insulation	W/m ² ·K		
	Infiltration	dm ³ /s.m ²		
HVAC	Ventilation system	-		
	Heating Capacity	W		
Occupant and Control	Heating setpoint	°C		

Parameters that :

- Characterises a dwelling
- Affects the LTH readiness

Output : Annual space heating demand occupied underheated hours

• A sample size of 1300 was found to represent the variations that can exists in dwelling types.

Identify the significance of building level parameters in assessing the readiness of a dwelling type for LTH

• Heating setpoint has the highest influence (occupancy related parameter)

Rank	Terraced Ir	termediate	Apartments		
	MT LT		MT	LT	
1	Heating Setpoint	Heating Setpoint	Infiltration	Heating Setpoint	
2	Ventilation System	Ventilation System	Compactness-Ratio	Infiltration	
3	Roof Insulation	Roof Insulation	Heating Setpoint	Roof Insulation	
4	Glazing Insulation Infiltration		External Wall Insulation	Compactness-Ratio	
5	Infiltration	Glazing Insulation	Glazing Insulation	Ventilation System	
6	Orientation	Orientation	Roof Insulation	Glazing Insulation	
7	External Wall Insulation	External Wall Insulation	Ground Insulation	External Wall Insulation	
8	Compactness-Ratio	External Door Insulation	External Door Insulation	Ground Insulation	
9	Ground Insulation	Ground Insulation	Ventilation System	External Door Insulation	
10	External Door Insulation	Compactness-Ratio	Orientation	Orientation	
11	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	

• A sample size of 1300 was found to represent the variations that can exists in dwelling types.

Identify the significance of building level parameters in assessing the readiness of a dwelling type for LTH

- Heating setpoint has the highest influence (occupancy related parameter)
- Parameters affecting ventilation heat losses (system and fabric)

Rank	Terraced Ir	ntermediate	Apartments		
	MT LT		MT	LT	
1	Heating Setpoint	Heating Setpoint	Infiltration	Heating Setpoint	
2	Ventilation System	Ventilation System	Compactness-Ratio	Infiltration	
3	Roof Insulation	Roof Insulation	Heating Setpoint	Roof Insulation	
4	Glazing Insulation	Infiltration	External Wall Insulation	Compactness-Ratio	
5	Infiltration	Glazing Insulation	Glazing Insulation	Ventilation System	
6	Orientation	Orientation	Roof Insulation	Glazing Insulation	
7	External Wall Insulation	External Wall Insulation	Ground Insulation	External Wall Insulation	
8	Compactness-Ratio	External Door Insulation	External Door Insulation	Ground Insulation	
9	Ground Insulation	Ground Insulation	Ventilation System	External Door Insulation	
10	External Door Insulation	Compactness-Ratio	Orientation	Orientation	
11	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	

• A sample size of 1300 was found to represent the variations that can exists in dwelling types.

Identify the significance of building level parameters in assessing the readiness of a dwelling type for LTH

- Heating setpoint has the highest influence (occupancy related parameter)
- Parameters affecting ventilation heat losses (system and fabric)
- Insulation : Roof > Window > wall > ground > door

Rank	Terraced Intermediate		Apartments		
	MT	LT	MT	LT	
1	Heating Setpoint	Heating Setpoint	Infiltration	Heating Setpoint	
2	Ventilation System	Ventilation System	Compactness-Ratio	Infiltration	
3	Roof Insulation	Roof Insulation	Heating Setpoint	Roof Insulation	
4	Glazing Insulation	Infiltration	External Wall Insulation	Compactness-Ratio	
5	Infiltration	Glazing Insulation	Glazing Insulation	Ventilation System	
6	Orientation	Orientation	Roof Insulation	Glazing Insulation	
7	External Wall Insulation	External Wall Insulation	Ground Insulation	External Wall Insulation	
8	Compactness-Ratio	External Door Insulation	External Door Insulation	Ground Insulation	
9	Ground Insulation	Ground Insulation	Ventilation System	External Door Insulation	
10	External Door Insulation	Compactness-Ratio	Orientation	Orientation	
11	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	

• A sample size of 1300 was found to represent the variations that can exists in dwelling types.

Identify the significance of building level parameters in assessing the readiness of a dwelling type for LTH

- Heating setpoint has the highest influence (occupancy related parameter)
- Parameters affecting ventilation heat losses (system and fabric)
- Insulation : Roof > Window > wall > ground > door
- Geometry : window to wall ratio has least significance

Rank	Terraced In	termediate	Apartments		
	MT	LT	MT	LT	
1	Heating Setpoint	Heating Setpoint	Infiltration	Heating Setpoint	
2	Ventilation System	Ventilation System	Compactness-Ratio	Infiltration	
3	Roof Insulation	Roof Insulation	Heating Setpoint	Roof Insulation	
4	Glazing Insulation	Infiltration	External Wall Insulation	Compactness-Ratio	
5	Infiltration	Glazing Insulation	Glazing Insulation	Ventilation System	
6	Orientation	Orientation	Roof Insulation	Glazing Insulation	
7	External Wall Insulation	External Wall Insulation	Ground Insulation	External Wall Insulation	
8	Compactness-Ratio	External Door Insulation	External Door Insulation	Ground Insulation	
9	Ground Insulation	Ground Insulation	Ventilation System	External Door Insulation	
10	External Door Insulation	Compactness-Ratio	Orientation	Orientation	
11	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	Window-to-Wall Ratio	

• The individual feature importances must be consulted when investigating a particular dwelling type for a specifc supply temperatrue.

• A sample size of 1300 was found to represent the variations that can exists in dwelling types.

Identify the significance of building level parameters in assessing the readiness of a dwelling type for LTH

- Heating setpoint has the highest influence (occupancy related parameter)
- Parameters affecting ventilation heat losses (system and fabric)
- Insulation : Roof > Window > wall > ground > door
- Geometry : window to wall ratio has least significance

- · For MT supply : 14% terraced and 70% apartments
- For LT : none are LT ready
- Radiator oversizing also has significant influence on LTH readiness.
- For Terraced-Intermediate : Radiator oversizing factor 2.5-5
- For apartments : Radiator oversizing factor 1.25-1.6

Terraced house archetype built between 1945-1975.

Supply Temperature	Annual space heating energy [kWh/m2]	Occupied underheated hours
HT supply (90/70)	HT supply (90/70) 163	
MT supply (70/50)	130	2123 (+30%)

Rank	Terraced Intermediate	Scenario	Strategy	Measure
	NT	Basic	Increasing heating capacity	Existing HT Radiators ¹ ,
	MI			Radiators with extra convectors
0*	Radiator capacity		Reducing setpoint temperature	20 ¹ , 19 [°C]
		Moderate	Improving ventilation system	System A: Natural Ventilation ¹ ,
1	Heating Setpoint			System C: Mechanical exhaust ventilation
2	Ventilation System		Cavity wall insulation (U) + infiltration rate	1.19 ¹ , 0.63, 0.56, 0.48 [W/m ² K]
			Improving window insulation (U) + infiltration rate	2.73 ¹ , 1.6, 1.5, 1.2 [W/m ² K]
3	Roof Insulation		Infiltration rate due to improvement in envelope	3 ¹ , 2 [dm ³ /s.m ²]
4	Glazing Insulation		Basic + Moderate combinations	
_		Deep	Replacing existing radiators	Radiators with extra convectors
5	Infiltration		Reducing setpoint temperature	20 ¹ , 19 [°C]
6	Orientation		Replacing ventilation system	System D: Balanced mechanical ventilation with hea
-				recovery (MVHR)
7	External Wall Insulation		Airtight envelope	0.4 dm³/s.m²
8	Compactness-Ratio		External Wall insulation (U)	0.26, 0.21, 0.17 [W/m ² K]
			Replacing windows (U)	1 [W/m ² K]
9	Ground Insulation		Internal roof insulation (U)	0.27, 0.15, 0.14 [W/m ² K]
10	External Door Insulation		Underneath ground floor insulation (U)	0.48, 0.27, 0.24 [W/m ² K]
			Replacing external door (U)	1.4 [W/m ² K]
11	Window-to-Wall Ratio	¹ Existing con	dition of the dwelling.	

Basic	Moderate	Deep	Total
3	124	54	182

The dwelling needs renovations before being connected to MT supply

Helpful in developing targeted solutions for making dwelling LTH ready

LinkedIn

Research Paper

Prateek Wahi

P.wahi@tudelft.nl

Cover: Image generated using Dall.E

TNO innovation for life

DE CONTINGENTENAANPAK CONTINGENTEN AS A BASIS FOR STANDADIZATION AND UPSCALING

UEI/IEBB SYMPOSIUM

NOVEMBER 2024

PUBLICATION

IN DE VOLGENDE VERSNELLING NAAR EEN KLIMAATNEUTRALE GEBOUWDE OMGEVING

- How can we help the renovation sector to organize continuity around standardized and industrial renovation products and processes:
 - Get more work done with less people
 - At lower costs,
 - With higher quality,
 - > And make learning a core activity
- > We started with suppliers of renovation solutions:
 - > Wat do they need to start working like this?
 - Download the paper at <u>www.tno.nl</u>

IN DE VOLGENDE VERSNELLING NAAR EEN KLIMAAT-NEUTRALE GEBOUWDE OMGEVING

SLIMMER, GOEDKOPER EN EFFICIËNTER AAN DE HAND VAN CONTINGENTEN

BACKGROUND

EXAMPLE HOMES EXISTING CONSTRUCTION

- The practice of developing scalable sustainability solutions: focus on specific target group of buildings
- 'Target groups' do not appear to be sufficiently homogeneous to guarantee large-scale application: energy renovations now simply often have a (too) great diversity of project-dependent / -specific solutions
- need for more refined subdivision of the housing stock in order to be able to respond to common differences

CONTINGENTENAANPAK: START FROM EXISTING SOLUTIONS

CONTINGENTEN

 Contingent: cluster of homes/buildings in a certain area to which a (previously successfully implemented) renovation solution can be applied repetitively

State of play process benefits :

- acquisition: 50% reduction in time use and lead time
- ii. Work preparation: 10-20% reduction in time use
- iii. production: 20% reduction cost price
- iv. execution: 10% productivity gain

CLUETERTOOL: DATA AND AI BASED APPROACH

TNO Innovation for life

CLUSTERTOOL - 2024

Wijkniveau: Groen = hoog percentage Rood = laag percentage woningen waar oplossing waarschijnlijk toepasbaar is

Input:

Track record = list 200+ renovated buildings: adresses + experiences (success, performance, price, ...)

Output:

List/ $\ensuremath{\mathsf{map}}$ with predicted experiences for all adresses in NL

TNO

WUJW vloer Opmeer

0.4-0.6

Providers can use the clustertool without TNO involvement

Individuele woningen: Donkerblauw = hoge verwachte toepasbaarheid Lichtblauw = lage verwachte toepasbaarheid

Zoom-level: 18 Center: [52.0118, 4.35938]

ONGOING PROGRAM

FROM VALIDATION TO LARGE SCALE RENOVATION

CONTINGEN

Innovatieproject Noord-Holland

Samen sterker, sneller, slimmer (MEER)

3500 woningen

> INTERRESTED?

CONTACT STEN DE WIT

STEN.DEWIT@TNO.NL 06 12021647

TNO innovation for life

Data-driven solution for scaling up renovations: impact assessment research and tools

Delft - 19 November 2024

Introduction W/E Consultants

~45 years young, ~40 co-workers, based in Utrecht and Eindhoven Consultancy social housing corporations, municipalities, RE investors, property developers, architects Research-based consultancy national government (RVO, TKI, NMD, ...) Software development (GPR Gebouw, Materiaal & Gebied): MCA tooling, MPG compliance, building certification, and other tools

mission-driven: Accelerating the Sus

NTA 8800

•**NTA8800**: energy regulation Dutch building code as of 2021.

•Purpose: Energy labeling

(based on primary fossil energy use kWh/m2)

•Comprehensive methodology: **bottom-up physics-based**

algorithm for annual energy use

• Over **1.000** pages

 \rightarrow How can we make this more accessible?

Proposed pseudolinear model

(Black – Grey – White) empirical model Physical envelope: average insulation value U_{gem} [W/m²K] compactness ratio A_{ls}/A_g Distinctive ventilation concepts (...,) \rightarrow Target: Energy need for heating in kWh/m² Data: ~8,000 full NTA8800 calculations based on reference buildings

A:	natural ventilation	\frown
2:	simple mechanical ventilation	(\land)
C4b:	CO ₂ driven mechanical ventilation	
02:	simple balanced mechanical ventilation (heat recovery)	()
05a/b:	high-end balanced mechanical ventilation (heat recov	recy)
		\sim

Hypothesis: modified linear relationship (parameters *a*, *b*, *n*) per ventilation concept (v):

$$E_{\rm v} = a_{\rm v} + b_{\rm v} * U_{\rm gem} * \left(\frac{A_{\rm ls}}{A_{\rm g}}\right)^{n_{\rm v}}$$

Results, discussion

Implementation in practice

• Implementation in consultancy: accessible indicative calculations

- Useful for 'rapid prototyping' on building stock & asset level
- Pragmatic model = part of the bigger story
 - Operational energy use
 - Embodied carbon (MPG, GWP)
- Blind spot in the bigger story:
 →Embodied impact of <u>renovation</u>!

Embodied impact of housing renovation

adviseurs

Sources: Circulaire Energierenovaties (W/E Adviseurs),

Integral impact of housing renovations in sight

• Web-based tool for **renovation variant comparison** (VariantenVergelijker)

• Using the **pragmatic NTA8800 model** to get a grasp of operational energy use

• Using the National Environmental Database to get a grasp of **embodied impact**

- Result: **integral**, **data-driven approach** to sustainable housing renovation
- Comparing variants based on environmental impact, but also over time!
- Variant & scenario-studies for ~35 organizations
- Dedicated app built on Viktor platform

Operational & embodied impact of renovation in sight

adviseurs

Operational & embodied impact of renovation in sight

Thank you!

Geurt Donze donze@w-e.nl

Gijs Ebbers ebbers@w-e.nl

Oudegracht 106 3511 AV Utrecht +31(0)30 677 87 77 Jan van Hooffstraat 8E 5611 ED Eindhoven +31(0)40 235 85 40 <u>w-e@w-e.nl</u> w-e.nl

