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Motivation and problem introduction

Challenge: Maintain balance between power supply and demand.

Changes in the power system

● renewable energy is
● intermittent
● uncertain
● uncontrollable

● new loads such as heat pumps, airconditioning,
and electric vehicles are
● significantly larger than other household

demand, and
● more flexible (and therefore also less predictable)

commons.wikimedia.org/
wiki/File:Electric_Car_

recharging.jpg
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Objective of planning algorithms

● Schedule flexibility efficiently
(e.g. electric vehicles, greenhouses, traders)

● Reduce operational costs

● Help balancing the grid

AEMO Energy Live. Managing frequency in the power system.
http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system
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Motivation: Grid imbalance regulation with electric vehicles

Case study: The Netherlands

● Average imbalance per PTU: ∼50-150MWh

● EVs required to restore the balance: ∼60000 (0.8%)

● Actual number EVs: ∼26000 BEVs, ∼98000 PHEVs

AEMO Energy Live. Managing frequency in the power system.
http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system

TenneT (Apr. 2011). Imbalance Management TenneT Analysis report.

Netherlands Enterprise Agency (2018). Statistics Electric Vehicles in the Netherlands.
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Flexibility is valorized in different energy markets

KU Leuven Energy Institute. The current electricity market design in Europe.
https://set.kuleuven.be/ei/images/EI_factsheet8_eng.pdf/
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Uncertainty in energy prices and markets
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Figure: Imbalance price in the Dutch market

TenneT. Market Information. http://www.tennet.org/bedrijfsvoering/ExporteerData.aspx
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Market design differences across Europe

Key:
Missing data

N/A

No minimum bid size

x <= 1MW

1MW < x <= 5 MW

5 MW < x <= 10 MW

x > 10MW

ENTSO-E WGAS. Survey on ancillary services procurement, balancing market design 2017.
https://docstore.entsoe.eu/Documents/Publications/Market%20Committee%20publications/ENTSO-E_AS_survey_2017.pdf
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Market design differences across Europe

Key:
Missing data

N/A

Hour (or blocks)

30 minutes

15 minutes

ENTSO-E WGAS. Survey on ancillary services procurement, balancing market design 2017.
https://docstore.entsoe.eu/Documents/Publications/Market%20Committee%20publications/ENTSO-E_AS_survey_2017.pdf
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Reserves and uncertainty

Reserves in the Dutch market (TenneT)

● Primary Reserves: Frequency
Containment Reserves (FCR)

● Secondary Reserves: Automated
Frequency Restoration Reserves
(aFRR)
● Contracted
● Voluntary

● Tertiary Reserves: Manual Frequency
Restoration Reserves (mFRR)
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Solution methods

Trivial solutions and solutions from the literature

DI Direct charging

OP Charging based on the optimal expected price

QO Quantity-only reserve bidding

DT Deterministic price bidding based on probability of acceptance

MR MaxReg heuristic

New solutions

SO1 One stage stochastic optimization

SO2 Two stage stochastic optimization

E. Sortomme and M. A. El-Sharkawi (2011). “Optimal charging strategies for unidirectional vehicle-to-grid”. In:
IEEE Transactions on Smart Grid 2.1, pp. 131–138

M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez (Sept. 2016). “Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead
Energy and Reserve Markets”. In: IEEE Transactions on Power Systems 31.5, pp. 3506–3515
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QO - Quantity-only reserve bidding

TenneT. Market Information. http://www.tennet.org/bedrijfsvoering/ExporteerData.aspx
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DT - Bidding based on probability of acceptance

M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez (Sept. 2016). “Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead
Energy and Reserve Markets”. In: IEEE Transactions on Power Systems 31.5, pp. 3506–3515
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MR - MaxReg heuristic

● The heuristic determines a preferred operating point (POP)

● When charging more/less is available, reserves are committed

● The MaxReg heuristic chooses a POP that maximizes reserves
utilization

E. Sortomme and M. A. El-Sharkawi (2011). “Optimal charging strategies for unidirectional vehicle-to-grid”. In:
IEEE Transactions on Smart Grid 2.1, pp. 131–138
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SO1&2- Stochastic optimization

SO1 - One stage stochastic optimization

● Similarly as DT, based on probability of acceptance, but with
optimizing expected value over multiple scenario’s

SO2 - Two stage stochastic optimization

● Probability of acceptance modelled
directly

● Binary variables model whether a
reserve bid is accepted or not
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Benchmarking

Objectives

● Quantitative analysis

● Online analysis

● Performance under uncertainty and multiple scenario’s

Benchmarking Electric Flexible Load Scheduling Algorithms

● Compare solution methods
e.g. Probabilistic, Deterministic, Stochastic

● Change market configuration
e.g. Capacity payments, Minimum reserve bid size

● Online comparison under Uncertainty
by means of a scenario generator (e.g. ARIMA)
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Scenario generation and online evaluation
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● Train an ARIMA model M based on historic data

● Use M to generate a ’real’ scenario s
● For every time step t in the online simulation:

● Use M to generate n scenario’s S from s starting at t
● Let the algorithm update its decisions based on S at point t

● Evaluate the algorithm based on the ’real’ scenario s
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Test setup

Test objectives

● Measure operation costs

● Measure risk (unmet demand and exceeding the battery capacity)

Test parameters

● Dutch market setup (95 historic scenario’s from 2016 used to
generate 950 test scenario’s)

● One EV with a battery capacity of 30kWh, initial SOC of 1kWh,
required SOC of 27kWh, a charging speed of 7kW and a charging
efficiency of 90%

● DT’s desired acceptance probability is set to 50%, SO1’s to 80%

● SO1 and SO2 optimize based on 20 scenario’s
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Benchmarking results - solution distribution
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● PI shows the perfect information solution

● Differences are small but statistically significant (as small as 2% of
the standard deviation)

● High variance shows importance of dealing with uncertainty

● Distance to PI shows difficulty to find optimal solutions
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Benchmarking results - online reacting to uncertainty
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● The best 25 scenarios are chosen from the 25q generated scenario’s

● Solution quality increases when updating decisions over time

● Data quality influences the algorithm’s (relative) performance)

23 / 27



Results table

Results for the Dutch case study. The values shown are the mean ± the
standard deviation of the results.

Unmet Exceeded Run
Costs + penalty demand capacity time

(e) (%) (%) (s)
q 1 2 1 1 1
DI 0.47±0.51 0.0 0.0 1e–3±2e–3
OP 0.39±0.44 0.0 0.0 1e–3±1e–3
MR 0.27±0.46 0.0 0.0 1e-3±6e-3
QO 0.28±0.50 0.19 (-0.09) 0.08±0.68 0.22±0.80 0.59±0.10
DT 0.21±0.54 0.16 (-0.06) 1.63±2.84 0.33±1.51 0.58±0.08
SO1 0.27±0.48 0.19 (-0.08) 0.11±0.69 0.02±0.21 0.66±0.10
SO2 0.19±0.58 0.12 (-0.07) 0.24±1.14 0.17±1.03 73.8±41.2
PI -0.25±0.78 0.0 0.0
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Conclusion

Conclusions
● A simple expected value based analysis does not suffice

● Online decision making is important to deal with uncertainty

● The algorithm’s performance is measured with regards to the
quality of the provided data

● Stochastic programming helps in finding good solutions that
balance operation costs and risk

More info
● Koos van der Linden and Natalia Romero and Mathijs M. de

Weerdt (2020). Benchmarking Flexible Electric Loads Scheduling
Algorithms under Market Price Uncertainty, arXiv 2002.01246.

● https://github.com/AlgTUDelft/B-FELSA/
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