Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty Algorithms for optimal trading in day-ahead and reserve markets, and scheduling flexible energy demand

Koos van der Linden Natalia Romero Germán Morales-España Mathijs de Weerdt

Delft University of Technology, The Netherlands

June 10, 2020

Contents

Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion

Motivation and problem introduction

Challenge: Maintain balance between power supply and demand.

Changes in the power system

- renewable energy is
 - intermittent
 - uncertain
 - uncontrollable
- new loads such as heat pumps, airconditioning, and electric vehicles are
 - significantly larger than other household demand, and
 - more flexible (and therefore also less predictable)

commons.wikimedia.org/ wiki/File:Electric_Car recharging.jpg

Objective of planning algorithms

- Schedule **flexibility** efficiently (e.g. electric vehicles, greenhouses, traders)
- Reduce operational costs
- Help balancing the grid

AEMO Energy Live. Managing frequency in the power system

http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system

Motivation: Grid imbalance regulation with electric vehicles

Case study: The Netherlands

- Average imbalance per PTU: ~50-150MWh
- EVs required to restore the balance: ~60000 (0.8%)
- Actual number EVs: ~26000 BEVs, ~98000 PHEVs

AEMO Energy Live. Managing frequency in the power system. http://energylive.aemo.com.au/Energy-Explained/Managing-frequency-in-the-power-system

TenneT (Apr. 2011). Imbalance Management TenneT Analysis report.

Netherlands Enterprise Agency (2018). Statistics Electric Vehicles in the Netherlands.

Contents

Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion

Flexibility is valorized in different energy markets

KU Leuven Energy Institute. The current electricity market design in Europe. https://set.kuleuven.be/ei/images/EI_factsheet8_eng.pdf/

Uncertainty in energy prices and markets

Figure: Imbalance price in the Dutch market

TenneT. Market Information. http://www.tennet.org/bedrijfsvoering/ExporteerData.aspx

ENTSO-E WGAS. Survey on ancillary services procurement, balancing market design 2017. https://docstore.entsoe.eu/Documents/Publications/Market%20Committee%20publications/ENTSO-E_AS_survey_2017.pdf

ENTSO-E WGAS. Survey on ancillary services procurement, balancing market design 2017. https://docstore.entsoe.eu/Documents/Publications/Market%20Committee%20publications/ENTSO-E_AS_survey_2017.pdf

Reserves and uncertainty

Reserves in the Dutch market (TenneT)

- Primary Reserves: Frequency Containment Reserves (FCR)
- Secondary Reserves: Automated Frequency Restoration Reserves (aFRR)
 - Contracted
 - Voluntary
- Tertiary Reserves: Manual Frequency Restoration Reserves (mFRR)

Contents

Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion

Solution methods

Trivial solutions and solutions from the literature

- DI Direct charging
- OP Charging based on the optimal expected price
- QO Quantity-only reserve bidding
- DT Deterministic price bidding based on probability of acceptance
- MR MaxReg heuristic

New solutions

SO1 One stage stochastic optimization

SO2 Two stage stochastic optimization

E. Sortomme and M. A. El-Sharkawi (2011). "Optimal charging strategies for unidirectional vehicle-to-grid". In: IEEE Transactions on Smart Grid 2.1, pp. 131–138

M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez (Sept. 2016). "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets". In: IEEE Transactions on Power Systems 31.5, pp. 3506–3515

QO - Quantity-only reserve bidding

TenneT. Market Information. http://www.tennet.org/bedrijfsvoering/ExporteerData.aspx

DT - Bidding based on probability of acceptance

M. R. Sarker, Y. Dvorkin, and M. A. Ortega-Vazquez (Sept. 2016). "Optimal Participation of an Electric Vehicle Aggregator in Day-Ahead Energy and Reserve Markets". In: IEEE Transactions on Power Systems 31.5, pp. 3506–3515

MR - MaxReg heuristic

- The heuristic determines a preferred operating point (POP)
- When charging more/less is available, reserves are committed
- The MaxReg heuristic chooses a POP that maximizes reserves utilization

E. Sortomme and M. A. El-Sharkawi (2011). "Optimal charging strategies for unidirectional vehicle-to-grid". In:

SO1&2- Stochastic optimization

SO1 - One stage stochastic optimization

• Similarly as DT, based on probability of acceptance, but with optimizing expected value over multiple scenario's

SO2 - Two stage stochastic optimization

- Probability of acceptance modelled directly
- Binary variables model whether a reserve bid is accepted or not

Contents

Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion

Benchmarking

Objectives

- Quantitative analysis
- Online analysis
- Performance under uncertainty and multiple scenario's

Benchmarking Electric Flexible Load Scheduling Algorithms

- **Compare** solution methods e.g. Probabilistic, Deterministic, Stochastic
- **Change** market configuration e.g. Capacity payments, Minimum reserve bid size
- **Online** comparison under **Uncertainty** by means of a scenario generator (e.g. ARIMA)

Scenario generation and online evaluation

- Train an ARIMA model *M* based on historic data
- Use *M* to generate a 'real' scenario *s*
- For every time step t in the online simulation:
 - Use *M* to generate *n* scenario's *S* from *s* starting at *t*
 - Let the algorithm update its decisions based on S at point t
- Evaluate the algorithm based on the 'real' scenario s

Scenario generation and online evaluation

- Train an ARIMA model *M* based on historic data
- Use *M* to generate a 'real' scenario *s*
- For every time step t in the online simulation:
 - Use *M* to generate *qn* scenario's *S* from *s* starting at *t*
 - Choose the *n* scenario's from *S* most similar to *s*
 - Let the algorithm update its decisions based on S at point t
- Evaluate the algorithm based on the 'real' scenario s

Test setup

Test objectives

- Measure operation costs
- Measure risk (unmet demand and exceeding the battery capacity)

Test parameters

- Dutch market setup (95 historic scenario's from 2016 used to generate 950 test scenario's)
- One EV with a battery capacity of 30kWh, initial SOC of 1kWh, required SOC of 27kWh, a charging speed of 7kW and a charging efficiency of 90%
- DT's desired acceptance probability is set to 50%, SO1's to 80%
- SO1 and SO2 optimize based on 20 scenario's

Benchmarking results - solution distribution

- PI shows the perfect information solution
- Differences are small but statistically significant (as small as 2% of the standard deviation)
- High variance shows importance of dealing with uncertainty
- Distance to PI shows difficulty to find optimal solutions

Benchmarking results - online reacting to uncertainty

- The best 25 scenarios are chosen from the 25q generated scenario's
- Solution quality increases when updating decisions over time
- Data quality influences the algorithm's (relative) performance)

Results table

Results for the Dutch case study. The values shown are the mean \pm the standard deviation of the results.

			Unmet	Exceeded	Run
	Costs + penalty		demand	capacity	time
	(€)		(%)	(%)	(s)
q	1	2	1	1	1
DI	0.47±0.51		0.0	0.0	1e-3±2e-3
OP	0.39±0.44		0.0	0.0	1e-3±1e-3
MR	0.27±0.46		0.0	0.0	1e-3±6e-3
QO	0.28 ± 0.50	0.19 (-0.09)	0.08 ± 0.68	0.22±0.80	$0.59 {\pm} 0.10$
DT	0.21±0.54	0.16 (-0.06)	1.63 ± 2.84	$0.33{\pm}1.51$	0.58 ± 0.08
SO1	0.27±0.48	0.19 (-0.08)	$0.11 {\pm} 0.69$	0.02±0.21	$0.66 {\pm} 0.10$
SO2	$0.19 {\pm} 0.58$	0.12 (-0.07)	$0.24{\pm}1.14$	$0.17{\pm}1.03$	73.8±41.2
PI	-0.25±0.78		0.0	0.0	

Contents

Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty

- Motivation and problem introduction
 - Flexible Electric Loads scheduling
 - Electricity Markets and Uncertainty
- Solutions
 - Solution methods and algorithms
- Evaluation
 - Benchmarking
- Conclusion

Conclusion

Conclusions

- A simple expected value based analysis does not suffice
- Online decision making is important to deal with uncertainty
- The algorithm's performance is measured with regards to the quality of the provided data
- Stochastic programming helps in finding good solutions that balance operation costs and risk

More info

- Koos van der Linden and Natalia Romero and Mathijs M. de Weerdt (2020). Benchmarking Flexible Electric Loads Scheduling Algorithms under Market Price Uncertainty, arXiv 2002.01246.
- https://github.com/AlgTUDelft/B-FELSA/

Acknowledgements

The work presented is funded by the Netherlands Organization for Scientific Research (NWO), as part of the Uncertainty Reduction in Smart Energy Systems program.

