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Abstract

The study of energy consumption across various building clusters offers a path to discern-
ing intricate patterns and establishing energy efficiency metrics. However, these analyses
have mostly been limited to small, controlled settings, leaving a vast potential for broader
application in energy efficiency management and classification untapped. This research
leverages machine learning models to determine gas consumption patterns and energy ef-
ficiency characteristics of buildings in real-life settings, based on a range of parameters
including insulation properties and year of construction. The developed system was ap-
plied to a comprehensive dataset comprising eight distinct clusters of buildings, with a
total of nearly 10,000 hourly gas consumption. To supplement the analysis, additional data
was gathered concerning the building features. The findings indicate that the average gas
consumption varies significantly across clusters, with dependencies shown for the age of
the building, insulation characteristics, and building orientation The developed framework
proved to be suitable for gaining insights into average gas consumption and usage patterns
at a building level, non-intrusively and on a large scale. The additional data provided com-
parative insights between different building groups. The developed system can be easily
expanded for other building characteristics and could be used to drive tailored feedback on
energy efficiency improvements within buildings. This research paves the way for a more
comprehensive approach to building energy efficiency, one that goes beyond the traditional
parameters to include a broader set of variables such as building usage, occupant behavior,
and heating system efficiency.

Keywords: smart meter data, machine learning, energy conservation, building energy man-
agement, anomaly detection, and end-user energy profiles.
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1. Introduction

Buildings represent a large portion of the world’s energy consumption and associated CO2
emissions, contributing to approximately one-third of emissions and accounting for 30%
of energy usage worldwide [35]. In response to the increasingly urgent need to combat
global warming, energy conservation in buildings has become a central focus in EU policies
and environmental initiatives. This emphasis on building efficiency has been driven by the
rise in environmental awareness and the implementation of legislation to optimize building
consumption for improved performance. The recognition of buildings’ substantial impact
on energy consumption and emissions has led to a concerted effort to address energy effi-
ciency challenges. Significant reductions in greenhouse gas emissions can be achieved by
implementing measures to optimize energy use within buildings. Such measures encompass
many strategies, including adopting energy-efficient appliances and systems, improving in-
sulation, and implementing intelligent building technologies.

In recent years, there has been a shift towards employing machine learning and data-driven
approaches to address building energy conservation challenges. These approaches aim to
capture the intrinsic behavior of building energy consumption by analyzing time series data
and developing intelligent systems capable of understanding and optimizing energy usage
patterns. By leveraging smart meter data and end-user energy profiles, these methods offer
opportunities for gaining deeper insights into energy consumption dynamics on a seasonal
and hourly basis.

This thesis focuses on developing a machine learning-driven framework designed to sup-
port energy conservation initiatives in the transition towards a carbon-neutral district at
DUWO’s Uilenstede campus. The framework utilizes smart meter data and end-user energy
profiles to comprehend the energy usage patterns of building occupants. The research aims
to inform strategic decision-making processes for building management and integrating re-
newable energy systems within the campus by establishing comprehensive user profiles and
generating insights into energy consumption. Ultimately, the goal is to facilitate the cam-
pus’s transition to a sustainable, carbon-free environment. The central research question
guiding this study is:

“How can energy consumption profiles guide energy conservation strategies at
Uilenstede campus?”

By addressing this question, the research aims to contribute to the advancement of energy
conservation strategies and support the transition to a more sustainable future.
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1. Introduction

1.1. Problem outline

DUWO’s Uilenstede campus, a prominent student housing complex in the Netherlands, is
an ideal research setting due to its various building types and distinct energy consumption
patterns. This intricate landscape offers a unique opportunity to conduct comprehensive
energy consumption analysis and devise strategic energy-saving measures. Mitigating the
impacts of climate change critically hinges upon enhancing building energy efficiency. Uti-
lizing smart meter data and machine learning methods, this research aims to dive into the
energy consumption patterns within the campus buildings, facilitating the detection of po-
tential conservation zones.

1.2. Motivation

Understanding and controlling energy usage is essential for achieving sustainability goals.[47].
Buildings contribute significantly to global carbon emissions, and as such, enhancing their
energy efficiency is a critical component in the quest for carbon neutrality.

The analysis of building meter data provides invaluable insights into energy usage patterns
over specific periods. When associated with building features, this information can help
identify potential energy conservation and efficiency improvement areas.

This research aims to improve energy efficiency in buildings by providing actionable insights
through data analysis and machine learning. The goal is to contribute to creating more
sustainable and energy-efficient built environments.

1.3. Knowledge gap

Despite significant advancements in smart meter technology and machine learning tech-
niques, a substantial knowledge gap remains in applying machine learning algorithms
and building data management to formulate energy conservation strategies at the district
level[23]. This gap is particularly noticeable in complex environments such as DUWO’s
Uilenstede campus, where many building meters are operational and a diverse array of
consumption data is involved.

The current comprehension and deployment of data analytics in this domain have yet to
extend to energy conservation efforts fully. Thus, this study aims to bridge this knowledge
gap, demonstrating how machine learning can be applied to smart meter data to enhance
energy conservation strategies.

2



1.4. Research Objective

1.4. Research Objective

The primary objective of this research is to use machine learning techniques to discern
energy consumption patterns in DUWO’s Uilenstede campus. While significant work has
been done on applying machine learning to build consumption data, a gap remains in its
practical application for enhancing efficiency analysis in real-world scenarios.

This research aims to bridge that gap by developing end-user energy usage patterns and
identifying the efficiency characteristics of a large-scale student campus. By integrating load
disaggregation research with gas consumption data for heating systems, we aim to guide
energy conservation efforts toward achieving a carbon-neutral district.

The insights from this research will provide actionable recommendations for decision-makers
to implement effective energy conservation measures. This will improve energy efficiency
and contribute to larger sustainability goals within the built environment.

1.4.1. Research questions

The main research question of this study is:

“How can the application of machine learning to smart meter data and end-
user energy profiles contribute to energy conservation efforts in DUWO’s Uilen-
stede campus?”“

To comprehensively address this overarching question, several sub-questions have been for-
mulated:

1. Can the utilization of machine learning methods on energy consumption data offer
additional insights into energy usage patterns?

2. What impact do different building characteristics, such as insulation and heating sys-
tems, have on the energy efficiency of the buildings?

3





2. Literature review

The literature review primarily focuses on applying Machine Learning methods for building
energy profiling. Relevant research papers were accumulated using search terms including
’energy profiling,’ ’clustering smart meter data for building energy,’ and ’building energy
usage pattern analysis.’

The literature review is further divided into several sections, each reflecting a topic pertinent
to this research. These sections include:

1. Feature Extraction Techniques in Building Energy Data Analysis

2. Machine Learning Data Analytics in Building Energy Management

3. Clustering Analysis in Building Energy Pattern Recognition

Each section will delve into existing literature and research findings, shedding light on the
current state of knowledge and identifying potential avenues for further exploration.

2.1. Feature Extraction Techniques in Building Energy Data
Analysis

Feature extraction techniques play an essential role in energy data analysis, particularly in
the context of forecasting energy consumption in buildings. They allow for dimensionality
reduction, enabling the models to focus on the most crucial aspects of the data that signifi-
cantly contribute to the prediction task.

There are numerous feature extraction techniques used for time series data, a few of which
are outlined below [20]:

• Fourier Transform: The Fourier Transform is a method that transforms time series data
from the time domain into the frequency domain. This can help to identify periodic
components or trends in the data.

• Wavelet Transform: Similar to the Fourier Transform, the Wavelet Transform also trans-
forms time series data into a different domain. However, unlike the Fourier Transform,
the Wavelet Transform maintains temporal information, which can help identify trends
over time.

• Autoregressive Integrated Moving Average (ARIMA) Models: ARIMA models can be
used to forecast future values in a time series. The coefficients of these models can be
used as features in a machine learning model.

5



2. Literature review

• Autoencoders: Autoencoders are a type of neural network that are used to learn effi-
cient encodings of input data. They can be used to compress time series data into a
lower-dimensional representation, which can then be used as features for a machine
learning model.

• Statistical Features: Simple statistical features such as the mean, median, standard
deviation, skewness, and kurtosis of a time series can also be used as features for a
machine learning model.

• Trend and Seasonality: Time series often contain trends (long-term increase or de-
crease) and seasonality (patterns that repeat over known, fixed periods of time). These
can be extracted and used as features.

• Principal Component Analysis (PCA): PCA is a dimensionality reduction technique
that can be used to reduce a large set of variables (such as time series data) to a small
set that still contains most of the information in the large set.

• Segmentation and Feature Extraction: Time series data can be segmented into smaller
chunks and features can be extracted from each segment. This is particularly useful
when working with long time series.

Bode et al. (2019) apply an unsupervised feature extraction technique using deep convo-
lutional auto-encoders, paired with statistical analysis of time series data. The goal is to
identify and learn recurrent patterns within the data. The auto-encoder, an AI tool, first
compresses the data into a lower dimensionality and then attempts to reconstruct the in-
put, essentially learning the underlying patterns. Their approach results in effective feature
extraction from time series data, crucial for later analysis or predictive modeling[12].

In the study by Zhan et al. (2021), Principal Component Analysis (PCA) was used for feature
extraction and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was
applied to generate distinct clusters, increasing between-cluster variance and decreasing
within-cluster variation. These results were then used to enhance the modeling of variables
using linear regression [5].

On the other hand, Xiao et al. (2020) used unsupervised learning to reduce the dimensional-
ity of building measurement data before applying the PCA, Autoencoder, and t-Distributed
Stochastic Neighbor Embedding (t-SNE). for feature extraction [69].

2.2. Similarity Measure Approaches

The field of data analysis employs numerous similarity measure approaches to determine the
association between different datasets or patterns. Table 2.1 examines several methodologies,
highlighting their defining characteristics and definitions.

In time-series analysis, the role of the distance measure is highly critical, particularly for
clustering. A range of distance measures is employed to gauge the proximity between time
series. Some of these measures are devised to be compatible with specific time-series repre-
sentations.
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However, other measures operate independently of the representation method and are com-
patible with raw time-series data. In conventional static object clustering, the distance mea-
sure is exact. In contrast, the measurement of distance in time-series clustering is often ap-
proximated. This subtle shift is due to the inherently dynamic nature of time-series data.

When comparing time series with varying sampling intervals and lengths, determining an
adequate measure of time-series similarity becomes crucial. Given its irregular sampling
intervals and diverse lengths, this is particularly important for time-series data. Accurately
measuring similarity can significantly influence the effectiveness of time-series clustering
and other related data analysis tasks.

Table 2.1.: Similarity measure approaches in the literature [7]

Distance Measure Characteristics Defined By

Dynamic Time Warp-
ing (DTW)

Elastic Measure; excels in temporal
drift

Shape-based [52, 76]

Pearson’s Correlation
Coefficient

Invariant to scale and location Compression-based [11]

Euclidean Distance
(ED)

Sensitive to scaling; used in indexing,
clustering, classification

Shape-based [7, 11]

Hidden Markov Mod-
els (HMM)

Captures dependencies between vari-
ables and serial correlation

Model based [20]

Autocorrelation Measures the similarity between ob-
servations as a function of time lag

Compression-based [29]

Cosine Wavelets Uses wavelet transformation to mea-
sure similarity

Compression-based [27]

KL Distance Non-symmetric measure of the dif-
ference between two probability dis-
tributions

Compression-based [36]

Edit Distance with
Real Penalty (ERP)

Robust to noise, shifts, scaling; uses a
constant reference point

Shape-based [43]

Edit Distance on Real
sequence (EDR)

Elastic measure; uses a threshold pat-
tern

Shape-based [43]

Cross-Correlation Measures similarity considering a
time-lag, useful in signal processing

Shape-based [54]

2.3. Clustering approaches

Based on the literature research, time-series clustering algorithms can be categorized into
several groups: Hierarchical, Partitioning, Model-based, Density-based, Probability-based
and more.

• Hierarchical Clustering[57]: This clustering method builds a hierarchy of clusters using
either agglomerative (bottom-up) or divisive (top-down) algorithms. It doesn’t require
the number of clusters as an initial parameter, which is a significant advantage in time-
series clustering, where defining the number of clusters in real-world problems can be
challenging. However, this algorithm can’t adjust clusters after splitting or merging,
often necessitating a combination with another algorithm to address this issue.
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• Partitioning Clustering [34]: Partitioning clustering, such as k-Means, forms ’k’ groups
from ’n’ unlabelled objects. It ensures each group contains at least one object. The
method involves minimizing the total distance between all objects in a cluster from
their cluster center or prototype.

• Model-based Clustering [55]: This method attempts to recover the original model from
a set of data. It presumes the existence of some randomly chosen centroids to which
noise is added with a normal distribution. The recovered model from the generated
data defines clusters. Methods used are usually statistical or neural network-based,
like COBWEB, ART, or Self-Organization Map.

• Density-based Clustering[7]: In density-based clustering, clusters are dense subspaces
of objects separated by subspaces with a low density of objects. Algorithms like DB-
SCAN and OPTICS operate based on this concept, where clusters are expanded if their
neighbors are dense.

• Probabilistic-based Clustering [42, 57]: Probabilistic mixture models such as Gaussian
Mixture (GM) models are comprised of various multivariate normal density compo-
nents, each having its own mean, covariance matrix, and cluster size. GM works well
with clusters that aren’t roundly shaped or overlapped, as it assigns samples to clus-
ters based on specific probabilities. After grouping the data into a set of multivariate
normal density components, the mixture component controls the cluster’s volume,
orientation, and shape.

Some clustering algorithms use raw time-series data, while others implement reduction
methods before clustering. In practice, the application of each group varies depending on
the specific needs of the time-series clustering task.

Figure 2.1.: Types of clustering approaches [7]

2.4. Machine Learning and Data Analytics in Building Energy
Analysis

Machine learning techniques form the foundation of building energy prediction and clas-
sification models. They are mainly bifurcated into two primary categories: Prediction and
Classification, as visualized in figure 2.2.

Several techniques are employed to predict and forecast energy consumption patterns in the’
Prediction’ category. These techniques include Artificial Neural Networks, which simulate
the way the human brain works to ’learn’ from past examples; Support Vector Machines,
which are mainly used for regression and classification tasks; Statistical Regression, which is
used to predict the outcome of a response variable based on one or more predictor variables;
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Decision Trees, which utilize a tree-like model of decisions; and Genetic Algorithms, which
are search-based algorithms inspired by the process of natural selection.

On the other hand, the ’Classification’ category includes Clustering and Self-organizing
Maps. Clustering methods, such as K-means and Hierarchical clustering, are unsupervised
learning techniques that divide the data into groups (or clusters) based on similarities.
Meanwhile, Self-organizing Maps is an artificial neural networks trained using unsuper-
vised learning to produce low-dimensional, discretized representations of the input space,
often used for classification.

Data-driven
models

Classification

Self-organizing
Map

Clustering
Hierarchical
Clustering

K-means
Clustering

Prediction

Genetic
Algorithms

Decision
Trees

Statistical
Regression

Support Vector
Machines

Artificial
Neural

Networks

Figure 2.2.: Machine Learning Techniques used in Building Energy Analysis

2.4.1. Artificial Neural Network (ANN) in Building Energy Consumption

An Artificial Neural Network (ANN) is a machine learning methodology that takes inspi-
ration from the neural networks found in the human brain. It involves interconnected pro-
cessing elements, called neurons, which work together to solve specific problems. ANNs
can process complex patterns and relationships between data, making them valuable for
predicting events and making decisions[67].

Karatasou et al. [37] showcased the influential impact of choosing artificial neural networks
(ANNs) alongside statistical techniques for optimizing building energy consumption mod-
els and predictions. Deep Reinforcement Learning (DRL), a blend of Deep Learning and
Reinforcement Learning, is another variant of artificial neural networks. According to a re-
view by Yu et al. (2021) [72], DRL has been used to predict the level of discomfort, thereby
facilitating decision-making processes in Smart Building Energy Management (SBEM).
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Originally developed for image processing, Convolutional Neural Networks (CNNs) have
demonstrated remarkable versatility, extending their utility to time-series problems [41].

Figure 2.3.: Illustration of CNN structure for a data classification task
[41]

A CNN primarily utilizes convolution and pooling operations. The convolution operation
can be understood as a sliding filter applied to the energy series. Generally exhibited in a
one-dimensional structure, it is often referred to as a 1D CNN [29]. This process effectively
extracts local features from the input data. The implementation of CNNs in short-term load
forecasting models is a significant focus in current research. For instance, Sadaei et al. [58]
introduced a combined model incorporating CNNs to augment the accuracy of short-term
load forecasting models. This further underlines the adaptability of CNNs beyond their
conventional image-processing applications.

2.4.2. Clustering Analysis and Pattern Recognition in Energy
Consumption

Analyzing time series data is crucial in energy management, with various methodologies
proposed to understand building energy consumption patterns. These methodologies can
be broadly categorized into three groups:

Techniques utilizing autocorrelation and probability distribution analysis Applications of
Symbolic Aggregate Approximation (SAX) Clustering strategies for identifying typical daily
electricity usage profiles.

Autocorrelation and Probability Distribution Analysis

Góis and Pereira (2022) proposed a technique to identify appliance usage patterns in build-
ings. Their process comprises a seasonality analysis using the Auto-Correlation Function
(ACF), identification of significant differences, and examination of the Energy Concentra-
tion Coefficient (C) for each sliding window. This approach can potentially enhance energy
efficiency [29].
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Symbolic Aggregate Approximation (SAX)

Capozzoli et al.(2018) suggest a refined SAX process to identify irregular energy patterns.
This method optimizes the time window width and symbol intervals in accordance with
the building’s energy behavior. Applying a Classification and Regression Tree (CART) re-
gression model allows the daily energy profile to be discretized into uneven time windows,
providing detailed analysis of daily energy usage variation [14].

Clustering Strategies for Identifying Typical Daily Electricity Usage Profiles

Li et al. (2018) proposed a clustering strategy to identify typical daily electricity usage pro-
files (TDEU) across multiple buildings. Their approach employs Gaussian mixture model-
based clustering and agglomerative hierarchical clustering to identify patterns in building
electricity usage. This methodology can aid energy-efficient decision-making for retrofits
and performance enhancement [42].

A method for identifying fundamental load shape profiles was suggested by Park et al.
(2019). The method applies rigorous clustering analysis and entropy calculation to a large
dataset from a variety of buildings. The effectiveness of the method was evaluated us-
ing Clustering performance metrics, including Cohesion, Separation, and Calinski-Harabasz
(CH) Score [50].

Quintana et al. (2022) provided a novel framework for outlier detection in energy load
profiles using discord similarity and the Kolmogorov-Smirnov (KS) test [Mat].

Liu et al. (2021) proposed a data mining-based framework using a two-step clustering anal-
ysis. The technique uses the density-based spatial clustering application with noise (DB-
SCAN) and the k-means algorithm to extract TELPs [44].

A comprehensive survey by Aghabozorgi et al. (2015) identifies three distinct types of time-
series clustering: whole time-series, subsequence, and time point clustering. They applied
Time Series K-means to group buildings based on gas consumption patterns [? ].

Modeling Occupancy and Occupant-Related Electric Load Profiles

Lastly, Causone et al. (2019) introduced a data-driven procedure for modeling residential
buildings’ occupancy and occupant-related electric load profiles. The method, which uses
Self-Organizing Map (SOM) and the k-means algorithm, identifies representative electricity
daily use profiles, from which daily occupant-related load profiles are generated for each
cluster [15].

These unique methodologies provide insights into energy management strategies and could
potentially be adapted for a variety of applications in the field of building energy consump-
tion analysis.
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2.5. Anomaly Detection in Building Energy Data

The concept of anomaly detection in building energy data involves the identification of
unusual or unexpected energy usage patterns that may point to equipment malfunction,
energy inefficiency, or other operational issues. Several notable studies have employed dif-
ferent approaches to tackle this issue, all contributing unique and valuable perspectives to
this field.

Araya et al. (2016) presented a collective contextual anomaly detection (CCAD) framework,
which integrates historical sensor data and additional features to train an autoencoder to rec-
ognize normal consumption patterns. Despite potential scalability and over-fitting issues,
the autoencoder-based approach offered computational efficiency and improved classifica-
tion accuracy. The framework’s design allows the model to measure how closely the input
data patterns align with the normal patterns upon which the model was initially trained
[8].

The same team (Araya et al., 2017) later improved this approach by proposing an ensemble
learning framework for anomaly detection (EAD). This work combines the previous model
with two prediction-based anomaly classifiers using support vector regression and random
forest. The framework effectively detects anomalies in building energy consumption, meet-
ing stringent false positive requirements [9].

Chiosa et al. (2022) introduce a framework that combines a contextual matrix profile (CMP)
algorithm with clustering analysis[18]. Their approach ranks anomalies with a severity score
and addresses the misclassification of recurring abnormalities, known as the ’twin freak’
problem.

Fan et al. (2018) explored an autoencoder-based ensemble method for anomaly detection in
building energy data in a different approach. The study developed multiple autoencoders
with various architectures and training schemes, with max-min normalization applied to
normalize the anomaly scores generated by each autoencoder. They proposed two indirect
methods to evaluate autoencoders’ performance and employed a data-driven method for
period identification. This study contributed significant insights into the performance of
denoising autoencoders under different levels of masking noises [24].

Finally, Liu et al. (2022) conducted data mining research on office building energy patterns,
employing cluster analysis and association rule discovery algorithms to analyze energy con-
sumption in office buildings. By utilizing k-shape and apriori algorithms, the study success-
fully uncovered hidden energy usage patterns in the dataset. However, it also recognized
the limitations of the apriori algorithm due to resource and time constraints when applied
to large datasets [45].

In conclusion, these studies underline the importance of anomaly detection in building en-
ergy data. The variety of methods proposed reflects the complexity of the problem and the
need for solutions that can handle different scales and types of data. Understanding and im-
proving these techniques is crucial for achieving energy efficiency and sustainable building
operation.
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2.6. Conclusion

This literature review explored various aspects of data analytics and machine learning in
building energy management. We highlighted various studies that applied these techniques,
revealing their potential for optimizing energy consumption, recognizing patterns, extract-
ing fractures, measuring time series similarities, and extracting salient features from energy
data.

In the terms of energy management, we saw how machine learning applications can be
pivotal in predicting and controlling energy consumption. Studies showed the effectiveness
of these applications.

With regard to clustering analysis and pattern recognition, the literature revealed their im-
portance in recognizing and categorizing diverse energy consumption behaviors. This in-
formation can assist in designing personalized energy efficiency strategies and detecting
irregularities in energy usage.

The discussion on feature extraction demonstrated the essence of this process in distilling
useful information from raw building energy data. Various techniques, such as deep convo-
lutional auto-encoders and statistical feature extraction, have been employed to capture the
crucial attributes of energy data that can improve energy management strategies.

Finally, we explored the role of anomaly detection in identifying unusual patterns or outliers
in building energy data. Techniques such as the CCAD framework and Ensemble learning
have been proposed to enhance the identification and handling of these anomalies, which
can greatly improve the overall energy efficiency and security of building systems.

In conclusion, the literature highlights the considerable potential of machine learning and
data analytics in building energy management. These techniques offer promising avenues
for enhancing energy efficiency, optimizing energy usage, detecting anomalies, and uncov-
ering useful patterns. Despite the progress made, there remains ample room for further
exploration and development in this rapidly evolving field.
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3. Description of case study

3.1. Building Overview

Situated on the cusp of Amstelveen and Amsterdam, the Uilenstede residential area is a
vibrant student campus, constructed between 1964 and 2014. It boasts a thriving community
of over 3,500 residents. It is home to various structures including more than 20 buildings
with over 3,000 homes, a shopping facility, a café, the Griffioen theater, office spaces, and the
VU Sports Center. The student housing organization DUWO manages the campus, which
oversees the rental and maintenance of residential and utility spaces.

Each of the 20 buildings on the campus is equipped with unique metering systems, metic-
ulously documenting the gas consumption of individual or shared heating systems hourly.
This wealth of data presents a comprehensive view of the buildings’ energy consumption
patterns, forming the foundation for detailed analysis and subsequent optimization strate-
gies. The energy supply for the complex is primarily in-house. DUWO centrally purchases
gas and electricity from the energy company and distributes it to users and building instal-
lations. Heat for space heating and hot tap water is produced in-house using a combination
of combined heat and power (CHP) units and central heating boilers. This generated heat is
then disseminated to the homes via nine separate heat networks.

Building-specific information, including construction year and insulation details, is avail-
able for some buildings. Even though this information doesn’t encompass all buildings,
it provides valuable insights into the building characteristics and their energy efficiency.
The buildings, constructed from the 1970s through the 2010s, embody the evolution of con-
struction methodologies and insulation practices over time. Insulation levels differ across
the buildings, painting a diverse picture of energy efficiency standards and revealing the
potential for further improvements. Some buildings operate on a shared central heating sys-
tem, while others utilize individual CHP systems, reflecting the variety of structural forms
ranging from apartments to studios.

By coupling the hourly consumption data with the available building-specific information,
we can conduct an in-depth analysis of energy consumption patterns. Understanding these
patterns is pivotal in identifying energy-saving opportunities and devising strategies to en-
hance energy efficiency across the Uilenstede residential area.

The figures below provide visual representations of the building numbers and the distribu-
tion of gas consumption meters across the Uilenstede campus.

Figure 3.1 illustrates the building numbers within the campus. Figure 3.2 shows the arrange-
ment of gas consumption meters in the campus.

For a more comprehensive list, refer to the appendix titled Building EPA information. The
appendix provides detailed information about the buildings, including their construction
years, complexes, and the number of homes they contain.
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Figure 3.1.: Building numbers in Uilenstede campus
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Figure 3.2.: Gas consumption meters in Uilenstede campus

3.2. Building Features

The Uilenstede residential area encompasses a variety of buildings, each with its unique
features. Here is a brief overview of the buildings and their corresponding meter IDs: For a
more comprehensive list, refer to the appendix titled Building EPA information.

The buildings, mainly from the same construction year, share similar construction attributes.
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In 2001, they underwent insulation improvements to mitigate noise pollution from nearby
Schiphol air traffic. The modifications primarily consisted of replacing facade glazing and
panels. After consultations, insulation values were established for different parts of the
residential buildings. These values are crucial for estimating the energy demand of the
buildings.

3.2.1. Insulation Values

The buildings within the campus, mostly from the same time period, share similar construc-
tion attributes. In 2001, significant insulation improvements were implemented to mitigate
noise pollution from Schiphol air traffic nearby. This primarily entailed the replacement of
facade glazing and panels. Following consultations, insulation values were established for
different parts of the residential buildings:

Table 3.1.: Building Insulation Information

Building Parts Insulation Values

Walls Contain uninsulated cavities, Rc = 0.36 (m2K)/W.
Ground Floor Floors Uninsulated and constructed over crawl spaces, Rc = 0.5(m2K)/W.

Windows, Glass + Frame, and Doors Installed with HR++ glass (’Schiphol glass’), U =1.7W/(m2K).
Tower Panels Insulated during the application of Schiphol glass, Rc =1.75 (m2K)/W.

3.2.2. Ventilation and Energy Standards

Ventilation in the buildings is facilitated through natural supply via facade grilles and me-
chanical extraction. Extraction is collective for homes stacked vertically, with the fan and
exhaust located on the roofs. A small portion of the homes use balanced ventilation with
heat recovery. However, as this represents a minor percentage, calculations for all homes are
based on natural supply and mechanical discharge. Newer homes on the east side, partic-
ularly building numbers 4536-4536, were constructed to meet a BENG insulation value of
0.75, a standard stricter than the current norm of 0.80.

3.2.3. Heating Systems

Several buildings house specific installations like combined heat and power (CHP) systems
and central heating systems. For example, buildings 4531, 4534, and 4535 each have a
communal CHP installation, while meter 4520 g0a serves as a central heating system for
buildings 4520-4526 and 4536-4538. The buildings’ usage also varies. Buildings 4501 and
4504 are apartment buildings with a shared central heating system, while buildings 4510
and 4511 were built in different periods. Buildings 4501 and 4504, constructed between
1970-1974, function as group homes with shared facilities. In contrast, buildings 4510 and
4511, erected around 1980-1985, offer multi-room homes. Figure 3.4 illustrates the energy
supply within the campus.
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Figure 3.3.: Diagram of a CHP Installation
[10]

3.2.4. Operation of Heating Systems

A Combined Heat and Power (CHP) installation, also known as cogeneration, is a highly ef-
ficient system that simultaneously produces electricity and useful heat from the same energy
source, often a fuel like natural gas. It operates by using the heat that would generally be
wasted in a conventional power plant, making it a sustainable solution that reduces carbon
emissions and lowers energy costs. A diagrammatic representation of a CHP installation
can be seen in Figure 3.3.

In the case of the Uilenstede residential area, four complexes utilize CHP installations for
their heating and hot water supply. The installations work by converting the gas into elec-
tricity through an engine. The heat generated during this process is then captured and
used to heat water, which is circulated to provide heating and hot water in the residential
complexes.

However, during peak loads, the CHP installations might not be sufficient to meet the de-
mand for heat. In these instances, central heating boilers augment the CHP installations to
manage the peak loads. The remaining complexes, which do not have CHP installations,
rely solely on these central heating boilers for their heating needs. A detailed overview of
the capacities per heat network and the distribution of CHP/central heating boilers can be
found in Table 3.2 and Figure 3.4

The heating system in the complexes follows a heating curve principle, adjusting the output
temperature based on the external temperature. This results in energy efficiency, as the
system automatically reduces the delivery temperature as the outside temperature increases
and vice versa. However, to comply with the protocols, which mandate that hot tap water
temperature must not fall below 60 or 65°C, heat generation and transport for space heating
and domestic hot water must be separated.
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A point of improvement could be the inclusion of a cascade connection, where heat is used
at different temperature levels. This would further enhance the energy efficiency and tem-
perature management of the system.

Table 3.2.: Capacities per Heat Network and Distribution of CHP/Central Heating Boilers

Table 3.3.: Heat Network Overview

Building no Heat network Central heating
boilers [kW]

Thermal
Assets
CHP
[kWth]

Electric
Assets
CHP
[kWe]

Proportion
CHP
thermal
vermogen

4520 Centrum 5583 500 330 8%

4531 Toren 1 1315 250 165 16%

4534 Toren 2 1315 250 165 16%
4535 Toren 3 912 250 165 22%
4501 Uilenstede 2-32 1115 - - -
4504 Uilenstede 36-70 1115 - - -
4510 Uilenstede 110 ad 1115 - - -
4511 Uilenstede 110 eh 1115 - - -

Figure 3.4.: Building heating system
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3.3. Building Usage

The Uilenstede residential area exhibits a diverse range of building configurations catering
to various resident profiles. Broadly, the buildings can be split into two principal categories
based on their design and utilization:

1. Group Houses: Buildings such as 4501, 4531, 4534, and 4535, erected between 1970-
1975, are conceptualized as group houses. They feature private bathrooms and shared
spaces. The heating and hot water requirements of these buildings are serviced by
either a central heating system or an individual Combined Heat and Power (CHP)
system.

2. Studios and Multi-Room Homes: Buildings like 4510, 4511, and 4536-4538, this cate-
gory offers a mix of multi-room homes and studio apartments. Constructed between
1980-2015, these buildings, like the group houses, are equipped with central heating
or individual CHP systems.

Table 3.4 and Figure 3.5 comprehensively classify the buildings and their salient features.

Figure 3.5.: Different housing types
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Table 3.4.: Building Types and Characteristics

Building No. Building Type Features Heating System

4501 Group House Shared facilities Central/Gas boiler
4504 Group House Shared facilities Central/Gas boiler
4510 Studios/Multi-Room Homes Various configurations Central/Gas boiler
4511 Studios/Multi-Room Homes Various configurations Central/Gas boiler
4531 Group House Private bathrooms CHP
4534 Group House Private bathrooms CHP
4535 Group House Private bathrooms CHP
4536 Studios/Multi-Room Homes Various configurations Central/CHP
4537 Studios/Multi-Room Homes Various configurations Central/CHP
4538 Studios/Multi-Room Homes Various configurations Central/CHP

A Combined Heat and Power (CHP) system, is an energy-efficient solution that concurrently
generates electricity and useful heat from a single energy source, typically a fuel like natural
gas. In the context of the Uilenstede campus, the CHP system is predominantly driven by
heating demands, with electricity generation being a secondary product. During summer,
the system mainly caters to hot water requirements.

On the other hand, buildings like 4501, 4504, 4510, and 4511 utilize a central heating system
that operates on a gas boiler and features a hot water storage facility for water distribution.
The meter data that we have collected accounts for the total gas consumption, which includes
hot water, heating, and in the case of CHP, electricity production.

3.4. Metering System Overview

The dataset for Uilenstede campus is derived from a multi-building complex fitted with a
Combined Heat and Power (CHP) / Photovoltaic (PV) system and a centralized heating dis-
tribution system on the southern side of the campus. Energy consumption is meticulously
tracked through distributed monitors and sub-meters primarily situated in the eastern sec-
tion of the buildings. The data comprises readings for both electricity and gas consumption.
However, the primary focus of the analysis will be on gas consumption, especially during
the winter months. This is in line with DUWO’s observation that the majority of the energy
consumption in the area is attributed to heating.

The table Building Number Address and Meter ID Information presents detailed informa-
tion about various buildings, specifically their assigned numbers, associated Meter IDs, and
locations. An important aspect to note from this table is that Meter ID 4905 is associated
with the gas consumption data of eight different buildings. The table serves as an invaluable
resource for understanding the allocation and usage of gas meters across different buildings,
providing insights into how resources are shared and utilized within the network.
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Table 3.5.: Building Number Address and Meter ID Information

Meter ID Building No Location

4902 4531 Uilenstede 5-61 (Toren 1)
4903 4534 Uilenstede 155-211 (Toren 2)
4904 4535 Uilenstede 405-461 (Toren 3)

4905

4520 Uilenstede 106-460
4522 Uilenstede 110-166
4523 Uilenstede 168-244
4524 Uilenstede 108-268
4525 Uilenstede 346-386
4536 Uilenstede 508-512
4537 Uilenstede 506-504
4538 Uilenstede 500-502

40752
4504 Uilenstede 36-50
4505 Uilenstede 52-58
4506 Uilenstede 60-70

40773
4501 Uilenstede 2-16
4502 Uilenstede 18-22
4503 Uilenstede 24-32

41574 4510 Uilenstede 102 a-d (H-inst)
40812 4511 Uilenstede 102 e-h (trad)

Figure 3.6.: Metering Type Classification Based on Meter ID

The metering systems in the residential buildings of Uilenstede are organized according
to the type, level, and energy flow (E-flow) being measured. Each meter ID corresponds
to different data types recorded, which provides a detailed understanding of energy usage
patterns. Figure 3.6 presents an example of the metering type classification.

The level of measurement ranges from multiple buildings to individual sub-meters, while
the E-flow captures different types of energy such as electricity, natural gas, hot water, cold
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Figure 3.7.: Interface of the Joulz Dataportal

water, and heat.

Examples of meter ID representations include:

• h3d: Represents a sub-metering point measuring domestic hot water for an end-user.

• k0b: Represents a central meter measuring cold water from the public grid for the
whole building.

• l8b: Represents a sub-metering point measuring water usage converted to domestic
hot water.

• g7a: Represents a sub-metering point for natural gas entering a single installation, e.g.,
a boiler serving several buildings.

• h9a: Represents a production meter measuring the amount of heat produced in do-
mestic hot water for use in multiple buildings.

The data for the analysis is obtained using an online API, which fetches both hourly and
daily metered data from the Joulz Dataportal.

This allows for efficient and up-to-date data acquisition, ensuring the accuracy and relevance
of the information used in the analysis, as shown in Figure 3.7.

From this time-series data, static features such as base load, peak load, and rising time
can be extracted, providing valuable insights into the energy consumption patterns. This
information forms the basis for understanding the various factors that contribute to the
overall energy usage in the buildings and identifying opportunities for energy conservation
at the Uilenstede campus.
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This chapter unfolds the designed methodology from the previous literature review. This
approach demonstrates distinct energy usage patterns spread across different building pro-
files.

Initially, we present an encapsulated account of our approach, followed by an elaboration
of the proposed workflow. This detailed overview delves into various clustering techniques
crucial for analyzing building consumption data [28, 55, 57, 74].

Subsequently, the focus shifts to a spectrum of algorithms like dynamic time warping [5,
52, 69] and autocorrelation function, with different cluster evaluation methods including
the Elbow Method, Silhouette Method, and the Bayesian Information Criterion for Gaussian
Mixture Models [42, 59].

Further sections explore a range of clustering methods, user profiling [15, 50], and feature
engineering [60], while also presenting a deciphering of the results with supplementary
clustering methods.

In the later part of the chapter, we transition toward the practical applications and analysis
of building consumption data. Here, we traverse through numerous analytical methods, in-
cluding clustering based on seasonal or temporal variations [57, 74], followed by a discussion
on the performance test and evaluation of the proposed strategy.

Then we illustrate the case study of the buildings under investigation and a comparative
analysis of Time Series K-Means Clustering [14, 53].

Conclusively, the chapter explores the incorporation of extra information into the energy
consumption analysis. Acknowledging the inherent correlation between building features
and energy usage, we assimilate variables such as building age, insulation quality, and build-
ing geometry into the analysis [46]. This comprehensive and integrative approach lends an
insightful understanding of energy consumption in the buildings on the Uilenstede cam-
pus, serving as a cornerstone for formulating sustainable energy conservation and efficiency
strategies.

4.1. Summary of Approach

To address the main research question and its associated sub-questions, we have devised a
comprehensive approach that combines the analysis of natural gas consumption patterns,
the application of machine learning algorithms on smart meter data, and the examination
of building attributes. The following sections outline the proposed methods for each sub-
question.
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4. Methodology

4.1.1. Sub-Question 1: Can machine learning enhance the categorization
of buildings based on their energy usage?

To gain novel insights into building energy efficiency via natural gas consumption patterns
using machine learning methods, we propose the following strategies:

Strategy 1.1: Highlight potential energy-saving areas by analyzing deviations from average
consumption trends, exploring seasonal variations, and contrasting consumption profiles
across different types of buildings.

Strategy 1.2: Implement unsupervised learning techniques such as clustering to establish en-
ergy profiles for each building. This will enable us to identify common energy consumption
patterns and understand disparities in gas usage among different buildings.

4.1.2. Sub-Question 2: How do building attributes influence energy
consumption and a building’s energy efficiency?

To comprehend how building characteristics affect energy efficiency, we propose the follow-
ing:

Strategy 2: Post initial clustering analysis, incorporate more diverse data such as building
features and weather records. This approach will augment our understanding of energy
consumption patterns and help identify the role of building attributes like insulation and
heating systems on energy efficiency.

4.2. Workflow

The proposed workflow for the analysis of gas consumption patterns and energy efficiency
is as follows:

1. Data Collection

a) Distribution map of the system

b) Collect uilding features

2. Data Pre-processing

a) Handling missing values

b) Noise/outlier removal

3. Descriptive Statistics

a) Understanding data attributes and summarizing the characteristics of a data set

4. Single and Global Building K-means Profiling

a) Splitting time series data into daily segments

b) Normalizing data by area (for Global Clustering)

c) Determining the optimal number of clusters (K)
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4.2. Workflow

Consumption data

Data preprocessing

Descriptive
Statistics

Single-Building
K-means Profiling

Global Building
K-means Profiling

Results and Discussion

Figure 4.1.: Workflow for analyzing gas consumption patterns and energy efficiency.

d) Applying K-means clustering

e) Assigning typical profiles for each cluster

f) Linking the clustered results with building characteristics

5. Results and Discussion

a) Interpretation of the results

b) Linking results with building characteristics

Upon completion of our detailed methodology and workflow, our objectives extend to:

• Examining variations in energy consumption across different seasons, weekdays com-
pared to weekends, and holidays.

• Analyzing the clustering outcomes based on peak and non-peak hours of the daily
cycle, specifically targeting correlations between peak periods and heating system use.

• Highlighting the differences in average consumption across different clusters, with
special emphasis on seasonal variances between summer and winter.

• Providing detailed categorization of the identified clusters, including shared charac-
teristics among buildings within each cluster. This involves examining the relationship
between average gas consumption and factors such as building age, type, and the use
of central heating systems.
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4. Methodology

4.3. Time-Series Analysis

The gas consumption data is a type of time-series data where the patterns of consumption
can shift or warp over time. Traditional distance measures such as Euclidean distance as-
sume synchronicity of the time series, but this might not be applicable for gas consumption
patterns which could be influenced by factors like weather variations, daily routines, and
seasonal cycles. The Dynamic Time Warping technique can effectively measure similarities
by aligning sequences that have temporal distortions, making it more suitable for this data
type [76].

4.3.1. Dynamic Time Wrapping

Dynamic Time Warping (DTW) is a method used to measure similarity between two tempo-
ral sequences, often used in time series analysis. The sequences could be of different lengths
or time scales.DTW works by ”warping” the time dimension of the sequences to calculate the
shortest possible path, or minimum cumulative distance, between the two sequences. This
warping process allows for the sequences to be non-linearly aligned, accommodating any
variations in timing or duration in the sequences. In this way, the sequences are optimally
matched even when their lengths or time scales vary. Rather than calculating a direct dis-
tance between matching points in the input sequences, DTW permits a non-linear alignment
between these sequences. This allows for an optimal match even when the sequences vary
in length or time scales, making DTW an efficient and flexible tool for pattern recognition in
temporal data [62, 76].

Regarding building energy consumption analysis, DTW is beneficial when paired with clus-
tering algorithms like Time Series K-Means. It enables grouping buildings that display
similar consumption patterns, regardless of potential variations in timing or duration across
these patterns. DTW’s functionality can be visually understood through 4.2. The figure
reveals that while the Euclidean distance may incorrectly identify dissimilar sequences as
similar due to its direct point-to-point connection, DTW ensures a reliable similarity mea-
sure by identifying the optimal alignment path.4.2 provides a binary matrix representation
of the DTW path.

Each dot signifies a non-zero entry, hence, the matching of an element in one sequence
with an element in the other. This representation and the corresponding optimal alignment
elucidate the core functionality of DTW in comparing temporal sequences [62].
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4.3. Time-Series Analysis

Figure 4.2.: Visual representation of Dynamic Time Warping

Alogrithm of DTW

The core principle of DTW is minimizing the distance between two time series, achieved by
’warping’ the time dimension to calculate the shortest possible path or minimum cumula-
tive distance. This calculation involves determining a cost, typically the absolute difference
between the points in the two sequences. The final cell of the DTW matrix will then hold
the minimum cumulative cost of aligning the sequences, as detailed in Algorithm 1.

Algorithm 1 Standard Dynamic Time Warping [3]
Data: Two sequences s and t of length n and m respectively
Result: Distance between the sequences

1 initialize a 2D array DTW with size (n+1) x (m+1) and set all elements to infinity DTW[0, 0]
:= 0 for i=1 to n do

2 for j=1 to m do
3 cost = d(s[i], t[j]) DTW[i, j] = cost + min(DTW[i-1, j], DTW[i, j-1], DTW[i-1, j-1])
4 end
5 end
6 return DTW[n, m]
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4.4. Clustering Methods

This section presents a comprehensive strategy for partitioning hourly gas consumption data
from different building meters into distinct clusters. Initially, our proposed strategy employs
Time Series K-means clustering both individually on each meter and globally across all me-
ters. This dual-level analysis helps to identify distinct consumption patterns and outliers
within and across buildings. Following the initial clustering, we explore the influence of
seasonal variations on gas consumption. We particularly focus on the winter and summer
seasons to elucidate the impact of weather conditions on energy usage. Subsequently, we
conduct temporal clustering, dividing the consumption data based on distinct periods such
as daily cycles, weekdays versus weekends, and holidays. This analysis uncovers patterns
specific to different time frames, enabling more nuanced understandings of consumption
behaviors. Finally, we display and interpret the results from all these clustering analyses,
elucidating the various patterns and trends in building gas consumption. This comprehen-
sive approach provides robust insights into building energy management.

4.4.1. Analyzing Hourly Gas Consumption Data with K-Means Clustering

When it comes to analyzing hourly gas consumption data collected over three years, K-
Means clustering has emerged as a reliable and efficient choice due to its specific attributes.
The key advantages of this algorithm include:

• Efficiency and Speed K-Means and its variant K-Medoids are known for their compu-
tational efficiency, which makes them a preferred choice over hierarchical clustering
methods. They can handle large datasets, such as multi-year time-series data, and
deliver prompt results.

• Representation Definition and Updating K-Means clustering relies on central repre-
sentations (prototypes) to define clusters. This characteristic can significantly impact
the success of the algorithm. This method is particularly beneficial for analyzing time-
series data that exhibit evident trends and patterns, such as gas consumption influ-
enced by seasonal variations and daily routines.

• Identification of Time-Series Patterns K-Means is highly effective at identifying clusters
of similar time-series patterns. It can facilitate efficient detection and grouping of
recurring patterns over time, which is an essential characteristic when analyzing gas
consumption data.

• Compatibility with Dynamic Time Warping (DTW) K-Means can be combined with
Dynamic Time Warping (DTW), a measure designed for time-series data where pat-
terns may shift or distort over time. Incorporating DTW enhances K-Means’ ability
to handle temporal distortions and can improve the overall accuracy of the clustering
process.

When used in conjunction with Dynamic Time Warping, K-Means clustering is a strong
contender for clustering time-series data such as hourly gas consumption data spanning
over three years. Its computational efficiency, effective handling of temporal distortions, and
compatibility with equal-length sequences make it an ideal choice. While each clustering
technique has its pros and cons, K-Means clustering offers distinct advantages for this type
of task.
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4.4.2. Outline of the proposed strategy

Using a clustering-based approach, the proposed strategy for identifying gas consumption
profiles across various university buildings is depicted in figure 4.3. This strategy is a four-
step process, encompassing data collection, single-building clustering, inter-building clus-
tering, and result visualization and interpretation.

Figure 4.3.: Outline of the proposed strategy

• Data Collection: The first step involves gathering data on building gas consumption.

• Single-Building Clustering: The collected data is then segmented and normalized to
provide daily usage profiles, considering hourly usage per unit floor area. Utilizing
time series K-means clustering, these daily profiles are grouped based on similarity
within the same group and dissimilarity from those in other groups. This process also
aids in identifying and eliminating outliers. The median of all daily usage profiles
within the cluster represents each cluster’s typical profile. The choice of time series
K-means as the clustering method comes from a comparative analysis with other clus-
tering algorithms discussed in section 4.3. The details of this analysis are discussed in
5.3 and 5.4.

• Inter-Building Clustering: The identified typical profiles from each building are then
inputted into the inter-building clustering phase. Here, we identify standard usage
profiles across multiple buildings based on the typical daily profiles identified for
each building. During this process, typical profiles from the single-building clustering
phase are normalized, ensuring each profile has a mean value of 0 and a variance
of 1. The dissimilarity measure between each pair of these normalized profiles is
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determined by calculating the Dynamic Time Warping (DTW) distance. These typical
daily profiles are grouped into clusters using agglomerative time series K-means.

• Visualization and Interpretation of Results: Finally, the median value of all the daily
usage profiles within each cluster is computed to derive the typical daily profiles for
multiple buildings. These results are then visualized and interpreted to understand
the gas usage behaviors across the buildings comprehensively.

4.4.3. Cluster Evaluation Methods

cluster evaluation methods were used, such as the elbow method, and silhouette score, to
optimize the number of clusters used in our analysis. This step is critical as it influences the
robustness and interpretability of our findings. The validation of these methods is important,
as the reliability of the results relies on the accurate functioning of these algorithms. To
optimally partition our data into clusters, we apply various evaluation techniques:

• Elbow Method (for K-means): This method is commonly used to decide on the
optimal number of clusters in K-means clustering [70]. It entails plotting the ex-
plained variance—the sum of squared distances of each data point to its cluster cen-
troid—against the number of clusters. As we increase the clusters, the explained vari-
ance declines. We select the number of clusters at the point where further increase
in clusters results in a marginal decrease in explained variance. This point resembles
an ”elbow” on the plot. Formally, this technique seeks to minimize the within-cluster
sum of squares (WCSS):

WCSS = ∑
i
(xi − cj)

2

where xi denotes a data point, and cj represents the centroid of the cluster to which xi
is assigned. The summation covers all data points and cluster centroids, as detailed in
Algorithm 2

Algorithm 2 Elbow Method [38]
Data: Data set X and maximum number of clusters maxClusters
Result: Plot of WCSS values against number of clusters

7 initialize an empty list wcssValues for k = 1 to maxClusters do
8 Initialize kmeans with k clusters Fit kmeans on X Append kmeans.inertia to wcssValues
9 end

10 Plot wcssValues

• Silhouette Method: This method involves calculating the silhouette coefficient for
each data point, which reflects the contrast between its average distance to points in
its cluster (a) and its average distance to points in the nearest neighboring cluster (b).
The silhouette coefficient ranges between -1 and 1, with higher values indicating better
clustering [56]. It is computed as follows and shown in Algorithm 3:

s(i) = (b(i)− a(i))/max(a(i), b(i))

Here, s(i) is the silhouette coefficient for data point i, a(i) represents the average intra-
cluster distance, and b(i) is the average nearest-cluster distance. High silhouette coef-
ficients indicate that data points are well-clustered.
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Algorithm 3 Silhouette Method [38]
Data: Data set X and maximum number of clusters maxClusters
Result: Plot of Silhouette scores against number of clusters

11 initialize an empty list silhouetteValues for k = 2 to maxClusters do
12 Initialize kmeans with k clusters preds ← kmeans. f it predict(X) Append

SilhouetteScore(X, preds) to silhouetteValues
13 end
14 Plot silhouetteValues

4.4.4. Time Series K-Means Clustering

Figure 4.4.: Flowchart of Clustering

The application of Time Series K-means, depicted in Fig.4.4, takes advantage of the inher-
ent K-means methodology to categorize numerous observations in a dataset into distinct
clusters. To perform time series K-means-based clustering, a model is initially fitted to
consumption data over specific time periods, which are transformed via different time seg-
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4. Methodology

mentation. Here, each observation signifies an original time period usage profile. Following
the fitting process, similar observations are grouped into the same cluster. The median of the
associated original usage profiles within a cluster is subsequently taken as the characteristic
usage profile of that cluster.

Time Series K-means is a specialized variant of the traditional K-means clustering algorithm
to handle time-dependent data. The fundamental objective of Time Series K-means, similar
to its traditional counterpart, is to minimize the sum of squared distances between data
points and their corresponding cluster centroids. However, in the context of time series
data, these centroids represent the average shape or pattern of the time series within each
cluster rather than mere arithmetic means [34].

Traditional K-means clustering operates by partitioning n observations into k clusters, where
each observation is assigned to the cluster with the nearest mean, which serves as the clus-
ter’s prototype. This traditional approach, however, does not account for the sequential
nature of time-series data. It treats each time point as an independent dimension, leading to
the possibility of misleading results when applied to time-series data.

On the other hand, Time Series K-means (TSKmeans) clustering offers a novel extension
of the K-means approach, specifically tailored for time series data. The salient feature of
TSKmeans lies in its innovative objective function that takes into account the temporal struc-
ture inherent in the data. Differing significantly from traditional K-means, TSKmeans in-
troduces weights assigned to different time stamps, thereby facilitating the recognition of
patterns across time, not just across observations.

The objective function of TSKmeans is designed to minimize the within cluster scatter while
simultaneously smoothing the weights of adjacent time stamps. The objective function also
incorporates a parameter α which is utilized to balance the influence between the scatter of
objects within clusters and the smoothness of the weights of the time stamps.

In mathematical terms, the objective function can be described as follows[34]:

P(U, Z, W) =
k

∑
p=1

n

∑
i=1

m

∑
j=1

uipwpj(xij − zpj)
2 +

1
2

α
k

∑
p=1

m−1

∑
j=1

(wpj − wp,j+1)
2 (4.1)

subject to

k

∑
p=1

uip = 1, uip ∈ 0, 1,
m

∑
j=1

wpj = 1, 0 ≤ wpj ≤ 1. (4.2)

where α is a balancing parameter.

This feature makes Time Series K-means particularly suitable for analyzing building con-
sumption patterns. By identifying clusters of buildings with similar temporal patterns in gas
usage, this method can provide insights into common patterns and anomalies, help identify
factors driving these patterns, and inform strategies for management and intervention. For
instance, it could help identify groups of buildings that show unusually high consumption
at certain times of the day or year, suggesting opportunities for targeted energy efficiency
measures.

A crucial aspect of K-means-based clustering is determining the optimal number of mixture
components, K. The Elbow method is employed to ascertain this parameter 2. The K value
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Algorithm 4 TSkmeans Algorithm [34]
Data: Time series data set X = X1, X2, . . . , Xn, number of clusters k, smoothing parameter α
Result: Membership matrix U, centroid vectors Z, weight vectors W

15 Randomly choose an initial Z0 = Z1, Z2, . . . , Zk and weight W = wp, j
16 repeat
17 Z and W fixed Solve the membership matrix U with Eq.4.1 U and W fixed Solve the

centroids Z with Eq.4.2 U and Z fixed Solve the weight W with quadratic programming
18 until Convergence;

that minimizes the Elbow score is selected for each building as the optimal K for the K-
means fitting. Prior research indicates that the number of typical profiles for individual
buildings typically ranges between 2 to 8 [14, 71]. Therefore, the optimal K value for the
single-building clustering in this study is derived within a scope of 2 to 14.

Algorithm 5 K-means Clustering [30]

1: procedure KMeansClustering(data, maxClusters)
2: Initialize silhouetteValues as an empty list for k = 2 to maxClusters do
3:

Initialize clusters randomly while clusters change do
4:

clusters← AssignPoints(data, clusters) ▷ Assign each point to nearest centroid
5: clusters← UpdateCentroids(clusters) ▷ Recompute new centroid of each cluster
6:
7: preds← AssignPoints(data, clusters) ▷ Final assignment of points to clusters
8: Append SilhouetteScore(data, preds) to silhouetteValues ▷ Compute silhouette score
9:

10: optimalK ← FindElbowPoint(silhouetteValues) ▷ Determine optimal k using the Elbow
method2

11: clusters← RunKMeans(data, optimalK) ▷ Run k-means with optimal number of clusters
12: VisualizeClusters(data, clusters) ▷ Visualize the resulting clusters

These steps are reiterated until either the assignments no longer change or the algorithm
reaches a predefined maximum number of iterations. This is a specific implementation
of the Expectation-Maximization (EM) algorithm, where the ’expectation’ step corresponds
to the assignment of data, and the ’maximization’ step corresponds to the recalculation of
centroids.
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5. Results

5.1. Summarizing the characteristics of data set

This section delves into the analytical aspects of the collected building gas consumption data.
Firstly, we offer a comprehensive overview of the consumption data, discussing its general
characteristics and initial observations. This overview forms the basis of our subsequent
in-depth analyses. Next, we perform an Interquartile Range (IQR) analysis across different
meters. By focusing on the spread of the middle 50% of the data, the IQR analysis allows us
to understand the dispersion and detect potential outliers within each meter’s consumption
data. Finally, we investigate the periodicity in the gas consumption data using autocorre-
lation. This analysis reveals the correlation of the data with its past values, enabling us to
discern patterns and cycles in the time series data.

5.1.1. Overview of consumption data

The energy consumption pattern of a building can be significantly influenced by seasonal
changes, as illustrated in Figure 5.1 representing a year’s worth of hourly gas consumption
data for building id 4902.

Figure 5.1.: Hourly consumption of one-year data for building 4902
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In the figure, the transitions between the seasons are represented by vertical red lines. Green
horizontal lines correspond to the average consumption throughout each respective season.
A trend observed in the data is the relatively high gas consumption during winter months,
contrasted by the lowest consumption during summer.

However, the most interesting aspect lies in the degree of variability or inconsistency in
consumption, represented by the variance in the data. The summer season records the
smallest variance, suggesting a stable and predictable consumption pattern during these
months. This could be attributed to relatively uniform weather conditions and daylight
hours. The spring and autumn seasons, also known as the transitional seasons, demonstrate
the highest variances - 179 for spring and 130 for autumn, compared to a mere 12 during
summer. Spring’s variance is approximately 18 times greater than summer’s, indicative of a
more unpredictable and fluctuating consumption pattern.

The unpredictability of weather conditions can explain this heightened variability during
these seasons. While winter and summer present fairly consistent cold and hot conditions
respectively, spring and autumn alternate between a broader range of temperatures. These
erratic weather patterns lead to inconsistent usage of heating systems in buildings, reflected
in the unstable gas consumption data. Variations in daylight hours with the lengthening and
shortening of days could also impact gas consumption during these transitional seasons.

Figure 5.2.: Hourly consumption of one-year data for building 4902

To delve deeper into the disparities in gas consumption, we’ve examined and visualized the
consumption data during heating and non-heating months in Figure 5.2, with the Nether-
lands’ climate as our frame of reference. Typically, the heating season extends from October
1st through April 30th, a period when the chilly weather necessitates the use of heating sys-
tems. Contrastingly, the non-heating season runs from May 1st to September 30th, during
which warmer conditions usually eliminate the need for active heating measures.

Taking the example of Building 4531, a discernible difference is evident in gas consumption
between the heating and non-heating months. In fact, the average gas usage during the
heating months exceeds that of the non-heating months by more than three times. This stark
contrast underscores the significant role that climate control, particularly heating, plays in
determining gas consumption. Therefore, as the temperatures dip during the colder months,
the necessity for heating escalates, leading to a corresponding surge in gas consumption.

38



5.1. Summarizing the characteristics of data set

5.1.2. Interquartile Range (IQR) Analysis

The Interquartile Range (IQR), also known as the midspread, middle 50%, or H-spread, is
a measure of statistical dispersion, providing insight into a dataset’s variability [65]. It is
defined as the difference between the upper quartile (Q3, 75th percentile) and the lower
quartile (Q1, 25th percentile), i.e., IQR = Q3 - Q1. Figure ?? illustrates a boxplot with an
interquartile range and a probability density function of a Normal Population. The IQR
values for the gas consumption data per floor area for different buildings are presented in
Figure 5.3.

Figure 5.3.: IQR bar plot of each building

From these results from Figure 5.3 5.4, we can draw several conclusions:

• Variability in gas consumption: Buildings 4504 and 4520, which have larger IQR val-
ues, show greater variability in gas consumption per floor area. Conversely, buildings
4510 and 4511, with smaller IQR values, exhibit a more consistent gas consumption
per floor area.

• Energy efficiency: Buildings 4510 and 4511, with smaller IQRs, might be more energy
efficient, as their gas consumption per floor area varies less. However, additional data,
such as the types of heating systems and insulation used, would be required to confirm
this.

• Comparison across buildings: The IQR allows us to compare gas consumption vari-
ability across different buildings. For instance, building 4520, which has a larger IQR,
suggests higher variability in gas consumption per floor area than the other buildings.

• Potential for optimization: Buildings with higher IQR values, such as 4504 and 4520,
may benefit the most from energy consumption optimization measures, as they exhibit
greater variability in their gas consumption.
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Figure 5.4.: Histogram of each building

• Skewness Skewness values are relatively low (close to 0) for all buildings. This sug-
gests that the gas consumption per area in each building is roughly symmetrical.

5.1.3. Periodicity Analysis via Autocorrelation

Autocorrelation function (ACF) is an integral analytical tool for determining recurring pat-
terns in time-series data. Autocorrelation in a discrete time frame assesses the correlation
between data points spaced apart by a distinct time lag. As a mathematical tool, autocor-
relation unveils repetitive patterns within the data. Formally, the autocorrelation of a real,
discrete-time signal x[n] for a delay of m is defined as

R[m] =
N−m−1

∑
n=0

x[n]x[n + m],

where R[m] is the autocorrelation at lag m, and N is the total number of points in the signal.
The normalized autocorrelation at lag m, denoted as r[m], is calculated by dividing the
autocorrelation by the zero-lag autocorrelation, i.e., the energy of the signal:

r[m] =
R[m]

R[0]
.

This normalization ensures that the autocorrelation function has a value of 1 at zero lag. The
autocorrelation function measures the correlation between data points separated by a spe-
cific lag, providing insights into the presence of recurring patterns in the data. In the discrete
time case, autocorrelation is also referred to as serial correlation, as it quantifies the corre-
lation of a signal with a delayed copy of itself as a function of delay. Thus, autocorrelation
analysis serves as a mathematical tool for detecting repeating patterns.

In the context of building energy consumption, the autocorrelation function proves partic-
ularly valuable. Patterns in energy usage over time can be effectively identified using ACF
[25, 57]. For instance, a strong autocorrelation at a specific lag may suggest a daily or weekly
pattern in energy consumption, such as elevated usage during daytime hours or workdays.
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Recognizing these patterns can inform energy management strategies, facilitating the iden-
tification of potential opportunities for energy conservation. The following pseudo-code
outlines the steps involved in this process:

Algorithm 6 Autocorrelation Analysis of Energy Consumption Data

1: procedure AutocorrelationAnalysis(data)
2: meter data← ExtractMeterData(data, meter id)
3: ac f ← ComputeAutocorrelation(meter data, max lag)
4: f iltered points← FilterPoints(ac f , min lag di f f erence) ▷ At least six intervals apart
5: VisualizeACF(ac f , f iltered points)
6: PrintPoints( f iltered points)

By executing the steps outlined in this pseudo code, we can evaluate the auto-correlation
at different lags, allowing us to identify recurring patterns in the energy consumption data.
Figures5.5, and 5.7 display these patterns.

5.1.4. Hourly autocorrelation analysis

Figure 5.5.: Autocorrelation of Hourly Consumption of Meter ID 4902

Based on the autocorrelation values of the hourly gas consumption for MeterID 4902 in
figure 5.5, clear patterns emerge that suggest a daily cycle in energy usage.

The highest autocorrelation values are observed at 0, 24, 12, 6, and 48 hours lags. The strong
autocorrelation at a lag of 24 hours underscores a daily cycle in energy usage. This aligns
with typical patterns of building energy usage, which often show daily fluctuations due to
human activities and environmental factors.

Furthermore, the significant autocorrelations at 12 and 6 hours indicate smaller repeating
patterns within each day. These may reflect patterns such as morning and evening peaks in
energy usage.
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Additional autocorrelations are observed at 48, 72, and 96 hours, suggesting a repeating
pattern every two to four days. However, the physical interpretation of these patterns may
require more context or additional analysis.

Also of interest is the autocorrelation at lags of 18, 35, and 42 hours. These lags do not
align neatly with a 24-hour cycle and suggest there may be additional patterns of usage at
these intervals. These could potentially be tied to certain activities or operational schedules
specific to this building.

In conclusion, the analysis of autocorrelation values clearly indicates a daily cycle in the
gas consumption of MeterID 4902, with additional smaller patterns repeating within each
day. The findings also suggest possible multi-day patterns. Further analysis and additional
contextual information about the building could provide more insights and confirm these
observations.

5.1.5. Hourly autocorrelation analysis across all meters

Several patterns and trends can be observed based on the autocorrelation values of the
hourly gas consumption for various meter IDs.

In the case of MeterID 4902 and 4903, strong autocorrelation values are observed at lags
of 24, 12, 6, and 48 hours, underscoring a robust daily cycle in energy usage. Significant
autocorrelation values are also observed at lags of 72 and 96 hours, hinting at potentially
repeating patterns every 3-4 days.

Interestingly, MeterID 4903 shows a high autocorrelation at a lag of 11 hours, indicating
some specific energy usage pattern during the day. For MeterID 4904, the highest autocor-
relations are observed at 6, 23, and 12 hours. These values, deviating from the full 24-hour
cycle, may be indicative of specific, less common operational or usage patterns.

MeterID 4905 demonstrates significant autocorrelations at 24-hour lags and multiples thereof
(48 and 72 hours), revealing a strong daily usage cycle. High correlation values are also noted
at 35 and 60-hour lags, suggesting additional operational patterns for this meter.

MeterID 40752 shows exceptionally strong autocorrelations at 24-hour intervals up to a 168-
hour (7-day) lag, suggesting a highly regular weekly pattern of gas usage. Similarly, MeterID
40812 demonstrates high autocorrelations at lags of 24, 48, 72, and 96 hours, again indicating
a steady daily cycle in energy use.

MeterID 40773, much like MeterID 4904, presents high autocorrelations at non-24-hour in-
tervals, such as 11, 18, and 35 hours, indicating unique usage patterns.

Finally, MeterIDs 41574 and 40812 show strong autocorrelation values at lags of 6, 12, 18,
and 24 hours, again emphasizing the importance of daily cycles. These meters, however,
also show strong autocorrelation at non-24-hour intervals, possibly indicating unique daily
usage patterns.

In conclusion, while most meters show strong daily and weekly usage patterns, some present
unique operational patterns at non-standard intervals. These patterns could be the result of
specific building operations or usage requirements, highlighting the need for customized en-
ergy management strategies. Further context about each meter’s usage environment would
help to refine these observations.
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Figure 5.6.: Autocorrelation of Daily Consumption of all Meter ID
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5.1.6. Daily autocorrelation analysis

Figure 5.7.: Autocorrelation of Daily Consumption of Meter ID 4902

Based on the daily data presented in Figure 5.7, the autocorrelation values do not display
a clear weekly or monthly data pattern. However, there is evidence of yearly data. Based
on the autocorrelation values of the daily gas consumption for MeterID 4902, a clear cyclical
pattern is not immediately evident at the weekly or monthly level. The first significant
autocorrelation occurs at a lag of 30 days, which might suggest some monthly pattern.
However, this should be further investigated, as it could be a coincidental finding rather
than a proper monthly cycle.

Autocorrelation values at lags of 60, 90, and 120 days show a weaker correlation and even
a negative correlation for the 120-day lag, suggesting there is less similarity in the gas con-
sumption pattern at these intervals.

Interestingly, we see noticeable autocorrelation values at lags of approximately 300 days
(314, 284, and 344 days), indicating some degree of year-long periodicity. These findings
suggest that the gas consumption pattern may be related to annual cycles, possibly reflecting
seasonal variations in usage. The negative autocorrelation at a lag of 224 days could indicate
a seasonal inversion where the consumption pattern changes direction.

In conclusion, while there’s no clear monthly cyclical pattern in the gas consumption of
MeterID 4902, there’s an indication of a possible yearly cycle. Further analysis could reveal
more insights and confirm these observations. Additional context about gas usage, such
as geographical location, usage type (residential, commercial, etc.), could provide insights
when interpreting these results.
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5.2. Performance test and evaluation of the proposed
strategy

This section provides a brief outline of the methodology implemented in our research. The
strategic approach proposed in this study was developed using Python. The time-series K-
means-based clustering, a crucial component of our strategy, was implemented utilizing the
scikit-learn library [51].

5.2.1. Insights from the Case Study Buildings

(a) Daily consumption data 2020-2023 across locations

(b) Scaled Daily consumption data 2020-2023 across locations

Figure 5.8.: Usage profiles for Building 4531

Figure 5.8 provides a thorough breakdown of daily gas usage across different meter loca-
tions, exhibiting distinct consumption trends. Specifically, Meter 4905, which is centrally
located within the campus, demonstrates the highest consumption level. This pronounced
consumption can be attributed to its extensive servicing role; while most buildings service
2-3 buildings or have standalone meters (as detailed in Table 3.5), Meter 4905 supports a
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network of approximately ten buildings. This wider reach naturally incurs higher energy
demands, which accounts for the observed elevated consumption. Apart from Meter 4905,
the remaining buildings present similar gas consumption levels. Building 4504 and Building
4501, built in 1991, notably exhibit the highest gas consumption per floor area. These build-
ings are low-rise and high-rise structures, respectively, accommodating 150 to 200 group
units each, with each unit equipped with a separate central heating system.

5.2.2. Assessment of Average Yearly Gas Consumption per Building Floor
Area

The insulation characteristics of each building (refer to Table B.1) suggest potential factors
contributing to the elevated gas consumption per floor area in Buildings 4501 and 4504.
Although these buildings are not the oldest ones on campus, their insulation standards
fall short in comparison to newer buildings like Uilenstede 500-502, Uilenstede 504-508,
and Uilenstede 510-1 (built between 2012 and 2014). With their lower insulation values,
Buildings 4501 and 4504 require more energy to maintain an optimal indoor temperature,
thereby increasing gas consumption.

Our proposed strategy’s effectiveness was assessed using yearly gas usage data from 2020
to 2023, recorded by 8 meters located at the Uilenstede Campus, South of Amsterdam.
These meters are predominantly found in student accommodations and communal areas (as
shown in Tables A.3 and A.2). Figure 5.9 presents the average yearly gas usage in relation to
the building floor area. There is substantial variation in the average yearly gas consumption
across the meters, with values ranging from 21.99 m3/m2 (Meter 41574) to 67.22 m3/m2 (Me-
ter 40752). Notably, buildings with comparable functions exhibit substantial consumption
differences. For instance, Meter 40752 and Meter 41574, both servicing similar floor areas,
demonstrate a nearly three times difference in their mean yearly gas usage, with Meter 40752
recording the higher value.

5.2.3. Estimation of Summer Hot Tap Water Consumption and Space
Heating Demand

An iterative process was adopted to calculate the summer hot tap water consumption per-
centage. First, the gas data was sourced from meters connected to the Combined Heat and
Power (CHP) system and the boiler, which track the gas consumption of the heating system.
For each meter, the data was filtered for the non-heating months (May to September) and
averaged to estimate the gas consumption exclusively for hot tap water during summer.

The hot tap water percentage can be calculated using the equation:

Hot tap water percentage =
Averaged summer months consumption (May-Sep)

Averaged total consumption

The total gas consumption for each meter was then computed by averaging the consumption
values over the year. The proportion of gas used for hot tap water was obtained by dividing
the average consumption during summer months by the total intermediate consumption,
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Figure 5.9.: Average yearly building gas usage per building floor area

Figure 5.10.: Percentage of Hot Tap Water v.s Building Floor Area
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yielding a percentage indicative of the gas consumption specifically allocated to hot tap
water.

To estimate space heating demand, the gas consumption for hot tap water was reduced by
the total gas consumption, including contributions from both the CHP system and the boiler.
The resulting value indicates the gas consumption dedicated to space heating. This method-
ology aids in understanding the allocation of the heating system’s gas consumption towards
hot tap water and space heating. The report from DUWO clearly indicates a significant
consumption of gas for hot tap water, as evidenced by reference [REFERENCE].

The chart in Figure 5.10 displays the distribution of hot tap water usage across different
meters in the building floor area. The data reveals that hot tap water accounts for about
45% of overall consumption across all meters, with the highest usage percentage being 58%.
This information highlights significant disparities in hot tap water usage among the me-
ters, with Meter 4905 having the highest usage. This could potentially be due to the central
distribution system serving more than 10 buildings, which may result in heat losses dur-
ing the transmission process. Meters 40812 and 41574, located in building 4510 and 4511
respectively, followed closely behind.

Interestingly, the hot tap water usage did not consistently correlate with the building floor
area. For example, Meter 40812, despite a smaller floor area, exhibited higher hot tap water
usage than Meter 4903. In contrast, Meter 4905, with the largest floor area due to its function
as a central heating system, showed the highest hot tap water usage.

These observations underscore the importance of considering factors other than floor area
when examining consumption patterns. Potential influencing factors might include cen-
tral heating distribution systems or unique building characteristics. A more comprehensive
investigation is necessary to uncover the root causes of these disparities in hot tap water
usage.
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5.3. Results from Single Building Time Series K-Means
Clustering

The segmentation of the data is visually depicted in Figure 5.11b, where the hourly gas
usage data for an entire week Figure5.11a is divided into daily profiles Figure5.11b. Daily
gas usage profiles containing missing data were excluded from subsequent analysis during
the segmentation process. Each of these daily profiles comprises 24 data points, each corre-
sponding to an hour of the day. Figure5.11a and Figure5.11b highlight the representation of
the same set of data points through bold curves.

The Elbow Method 4.3, utilized to ascertain the optimal count of clusters, suggested two as
the most appropriate number for most buildings. Buildings 4510 and 4511, however, pre-
sented an exception to this trend by showcasing three distinct clusters. The ideal cluster
count, representing typical daily gas consumption profiles for each building, was deter-
mined through time series K-means clustering. The clustered distribution of daily usage
profiles is observed to be relatively balanced across the clusters. These findings are summa-
rized in Table A.4. For a more in-depth analysis, please refer to ’Single Building Clustering
Result’ and ’Typical Usage Profiles’ in the appendix C and appendix D.

(a) Usage profiles before the data segmentation of building 4531

(b) Usage profiles after the data segmentation of building 4531

Figure 5.11.: Usage profiles for Building 4531
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5.3.1. Typical Daily Usage Profiles of Building 4531

Constructed in 1970, Building 4531 is a high-rise structure housing approximately 360 units,
predominantly utilized for group housing. This building also features an in-house Com-
bined Heat and Power (CHP) system. For illustrative purposes, the clustering results for
Building 4531 are demonstrated graphically, with the heating months distinguished by red
lines and the non-heating months represented by blue lines. In these graphs, a single curve
indicates the typical profiles in each cluster—calculated by averaging all the usage profiles
within that cluster. The colored curves, on the other hand, represent all individual daily
usage profiles within the cluster, as seen in Figure 5.12.

(a) Building 4531 Cluster Result Cluster 0 (b) Building 4531 Typical Usage Profile 0

(c) Building 4531 Cluster Result Cluster 1 (d) Building 4531 Typical Usage Profile 1

Figure 5.12.: Visualisation of Cluster Results for Building 4531

These graphical representations underline the seasonal variations in gas consumption, high-
lighting noticeable differences in both usage patterns and volumes between heating and
non-heating months. As expected, heating months generally show higher gas consumption
than summer months, reaffirming the significant impact of seasonal changes on gas usage.

Specifically, for Building 4531, the data suggests the presence of two distinct usage profiles,
comprising 630 and 466 individual profiles, respectively, accounting for 57% and 43% of the
data (see TableA.4 for more details). These clusters are predominantly evenly distributed, as
visualized in Figure 5.12.

It’s also observable that each cluster exhibits two prominent peaks of gas consumption. For
Cluster 0, representing the non-heating months, the peaks occur around 9 am and 9 pm. In
contrast, Cluster 1, representing the heating months, shows peaks around 10 am and 7 pm.
This may be attributed to the longer daylight hours during the summer, leading to a wider
interval between peak usage times. Notwithstanding the season, usage dips can be observed
around 3 am and 3 pm, although the exact timing varies.
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Figure 5.13.: Building 4531 Daily Cluster Distribution

Figure 5.13 offers a clear visualization of the calendar distribution of daily gas usage pro-
files for Building 4531. In this figure, each block represents a distinct cluster, allowing the
viewer to easily discern the prevalence of each cluster throughout 2022. This graphic illus-
tration decorates the division of the two clusters, particularly noticeable between April and
October.

Cluster 0, corresponding to non-heating months, exhibits dominance from April to October.
During this interval, the weather generally remains mild, lessening the necessity for heat-
ing and consequently lowering gas consumption. Conversely, Cluster 1 symbolizes heating
months where the chilling weather conditions necessitate amplified heating demands, thus
escalating gas usage. The blocks in this cluster represent days where the gas consumption
resonates with the distinct heating-month usage profile.

This illustrative representation underscores the temporal pattern in gas consumption, reveal-
ing a distinct seasonality in the usage profiles for Building 4531. The influence of seasonal
climatic variations on these patterns is clear, further emphasizing the close-knit relationship
between weather conditions and heating requirements.
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5.3.2. Typical Daily Usage Profiles of Building 4511

Established in 1982, Building 4511 is a low-rise edifice housing 60 units predominantly
comprised of studios and multi-room homes. The building boasts its own independent
central heating system. The gas consumption patterns of buildings 4510, 4511, and 4504 in
Figure 5.14 exhibit a distinctive trend observable during heating and non-heating months,
as discussed in greater detail in Appendix D.

(a) Building 4511 Cluster Result Cluster 0 (b) Building 4511 Typical Usage Profile 0

(c) Building 4511 Cluster Result Cluster 1 (d) Building 4511 Typical Usage Profile 1

(e) Building 4511 Cluster Result Cluster 2 (f) Building 4511 Typical Usage Profile 2

Figure 5.14.: Visualisation of Cluster Results for Building 4511

These structures show a marked consumption spike around 6 am, coinciding with the period
when boilers are typically heated for thermal disinfection. This process, crucial for the
control of Legionella bacteria and other waterborne microbial contaminants, necessitates an
early morning surge in gas use to maintain water temperatures between 60-70°C for a given
duration.

For Building 4511, the peak usage moment surfaces around 10 am and 9 pm. Three distinct
clusters were identified (see TableA.4 for more details): Cluster 0, representing non-heating
months, accounts for 30% of the daily usage profile; Cluster 1, a mix of heating and non-
heating months, contributes to 38% of the daily usage; and finally, Cluster 2, symbolizing
the heating months, makes up 32% of the daily usage profile (see appendix C for reference).
The peak moment in Cluster 2 displays a relatively lower spike at 6 am compared to other
buildings. This is due to the relatively high overall gas consumption during the heating
season, making the 6 am increase less pronounced. As with other buildings, the lowest gas
usage consistently occurs around 3 am.
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Interestingly, Building 4511 exhibits a minor fluctuation in gas consumption around 3 pm
compared to other buildings. This variance can be attributed to the smaller number of units
(60 in total, see Table A.3) and the presence of its independent central heating system, both
factors that potentially minimize heat losses compared to centralized systems. Consequently,
this leads to lower gas consumption when adjusting to changes in heating demand.

Figure 5.15.: Building 4511 Daily Cluster Distribution

Figure 5.15 showcases the calendar distribution of the daily gas usage profiles for building
4511, with each distinct block signifying a different cluster. The clusters visually depict
various periods of gas usage throughout the year, each corresponding to different seasonal
demands.

Cluster 0 represents the summer months, during which gas consumption is at its lowest.
This lower demand for gas in the summer can be attributed to warmer temperatures, which
reduce the need for space heating. The blocks representing this cluster indicate the days
when daily gas consumption aligns with the typical summer usage profile.

Cluster 2, on the other hand, represents the winter months, typically spanning from late
November to late February. Gas consumption during this period is relatively higher due
to the increased demand for heating in the colder weather. This cluster shows days with
a usage pattern consistent with the typical winter profile, where heating needs drive the
consumption to its peak.

Lastly, cluster 1 embodies the transitional periods, notably the spring and autumn months
and the holiday period around Christmas. The days represented in this cluster are inter-
spersed between the heating and non-heating months, leading to a mix of high (red) and
low (blue) usage profiles in Figure5.14. This mixed profile is due to the varying weather
conditions during these transitional seasons, which can fluctuate between warm and cold
days. This variability could also lead to a minor increase in fluctuation around 3 pm, pri-
marily because these periods of the year exhibit more variance in gas usage due to changing
weather patterns.

53



5. Results

5.3.3. Variation of Single Building Typical Gas Usage Profiles

The following figures 5.16 present typical usage profiles for the specified meter IDs: 40773,
4501, 4902, 4531, 4905, 4520, and 40812, which correspond to Buildings 4511, 4501, 4520, and
4531, respectively.

Building 4520 employs a central Combined Heat and Power (CHP) system that distributes
energy to more than ten building units while Building 4531 operates its own CHP system
within its premises. Building 4501, on the other hand, is a low-rise group house.

(a) Building 4501 (b) Building 4531

(c) Building 4520 (d) Building 4511

Figure 5.16.: Gas usage profiles

All the buildings house student accommodations. The distribution of daily usage profiles
within each building reveals a common pattern among the top three profiles, characterized
by clear peaks and dips. The clusters’ distribution is roughly balanced, with each represent-
ing around 50% of the instances. These clusters illustrate gas usage patterns during both
non-heating (Cluster 0) and heating (Cluster 1) months. The profile for Building 4511, which
displays three similar clusters, deviates slightly due to the distinct operation of its central
system and heating schedule.

In conclusion, the usage patterns across all buildings are quite similar, presumably because
they all serve as student accommodations. The slight differences in each building’s typical
profile might be attributed to variations in their heating systems or the types of housing
units present. However, the overall differences among these meters are minimal.
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5.4. Results from Inter-Building Time Series K-Means
Clustering

To cluster the gas consumption data across all meters, each consumption data point was
scaled by its respective floor area. This normalization ensures that variations in building size
do not affect the analysis, allowing for a focused investigation into potential commonalities
or patterns across different meters. A more detailed explanation of this methodology is
provided in the appendix under ’K-Means Global Building Clustering Result.’ [to be finished
appendix]

The employment of intra-building clustering analysis led to identifying 8706 unique daily
usage profiles in a 24-dimensional space across 8 meters (refer to Table3.5 for more details).
The choice of forming 8 clusters reflects the number of building meter ids, facilitating an ex-
ploration of whether global clustering could differentiate between different meter ids across
all buildings through inter-building clustering. The representative profiles for each cluster
were deduced by averaging the daily usage profiles categorized into each cluster. Consider-
ing the significant computational demands of clustering three years’ worth of hourly build-
ing data, potential future investigations could look into alternative methods for clustering
daily usage profiles across different buildings.

Each cluster presented its unique characteristics:

• Cluster 0: Building 4504 makes up most of the smallest cluster. The energy consump-
tion of this cluster shows a significant increase at around 6 am, which is the usual time
for boiler heat-up for thermal disinfection. This trend is also observed in buildings
4510 and 4511. Additionally, energy consumption peaks again at 9 pm, with a slight
decrease seen at 3 pm in the afternoon.

• Cluster 1: The main group consists of meter readings from buildings 4531, 4534, and
4535. These readings are only during non-heating months and show a low average
hourly consumption compared to other groups. There is a slight increase around 6 am
for thermal disinfection.

• Cluster 2: The majority of this cluster is made up of just two buildings - 4504 (80%)
and 4501 (20%). The fact that they have similar gas usage patterns may indicate that
they are similar in terms of their building type and the people who occupy them.

• Cluster 3: This group, primarily consisting of Meter ID 4501 and 4504, has a consistent
daily consumption pattern with slight increases at approximately 11 am and 7 pm.
The higher usage during colder months may be due to shorter daylight hours, which
explains the 8-hour gap between the two peaks.

• Cluster 4:This group of buildings, specifically 4510, 4511, and 4520, tend to use more
energy at 9 am and 9 pm. This trend is more noticeable during the months when
heating is not required. The longer daylight hours during these months may be a
contributing factor to the 12-hour gap between the peaks.

• Cluster 5: This group of readings includes a fair mix of data from all the buildings, and
Meter IDs 4511 and 4510 account for one-third of the daily profiles. The consumption
pattern is similar to that of clusters 3 and 4, which are mainly during the heating
months.
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• Cluster 6: This cluster has an even distribution of readings from Meter IDs 4531, 4534,
4535, and 4520. The consumption pattern is similar to clusters 3, 4, and 5, which are
mostly during heating months.

• Cluster 7: The data in this cluster comes mostly from buildings 4504 and 4501 and
accounts for 99% of the readings. The way energy is being used is similar to the
pattern seen in cluster 1.

Figure 5.17.: Daily usage profiles across all buildings

56



5.4. Results from Inter-Building Time Series K-Means Clustering

Figure 5.18.: Cluster result of all buildings
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5.4.1. Building feature in each cluster

The data indicate a broad distribution of buildings across eight clusters, each characterized
by distinct building features and gas consumption levels. This report aims to dissect these
clusters, comprehensively understanding their characteristics and drawing crucial conclu-
sions from an energy efficiency standpoint.

Cluster 1 - This cluster, comprising 3012 buildings, has the lowest average gas consumption.
It features a diverse mix of buildings constructed between 1970 and 2014. The prevalent
orientation is westward, and the buildings demonstrate relatively high insulation values for
the floor, roof, and facades. This suggests effective insulation could be a contributing factor
to their energy efficiency. The insulation level of the windows is also satisfactory.

Cluster 4 - With the lowest average gas consumption, this cluster is primarily composed
of buildings constructed in 2014. These buildings exhibit high insulation values for the
floor, roof, and facades, which may account for their energy efficiency. Like Cluster 1, the
buildings in this cluster are predominantly oriented towards the west.

Contrastingly, clusters with elevated average gas consumption, namely Cluster 2 and Clus-
ter 7, feature buildings with relatively lower insulation levels. This implies that inadequate
insulation may be a contributing factor to their higher energy use for heating.

To understand these clusters further, we delve into a detailed analysis of each cluster:

Cluster 0 (265 buildings)

Year Mostly constructed in 1991

Insulation

Floor: 1.36 m² K/W
Roof: 1.69 m² K/W
Facades (excluding AOR): 1.02 m² K/W
Windows: 1.85 W/(m² K)

Consumption (per m2) Lower average gas consumption at 0.00496

Cluster 1 (3012 buildings)

Year Primarily built in 1972

Insulation

Floor: 1.75 m² K/W
Roof: 2.06 m² K/W
Facades (excluding AOR): 1.53 m² K/W
Windows: 2.11 W/(m² K)

Consumption (per m2) Less gas consumption on average, with a value of 0.00128

Cluster 2 (339 buildings)

Year Mainly built in 1991

Insulation

Floor: 1.3 m² K/W
Roof: 2.22 m² K/W
Facades (excluding AOR): 2.0 m² K/W
Windows: 1.80 W/(m² K)

Consumption (per m2) Highest average gas consumption among the clusters at
0.01303
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Cluster 3 (524 buildings)

Year Constructed primarily in 1991

Insulation

Floor: 1.66 m² K/W
Roof: 2.29 m² K/W
Facades (excluding AOR): 1.76 m² K/W
Windows: 2.01 W/(m² K)

Consumption (per m2) Average gas consumption, with a value of 0.00729

Cluster 4 (2660 buildings)

Year Mostly built in 1976

Insulation

Floor: 1.85 m² K/W
Roof: 2.30 m² K/W
Facades (excluding AOR): 1.81 m² K/W
Windows: 2.07 W/(m² K)

Consumption (per m2) Lower average gas consumption, with a value of 0.00256

Cluster 5 (2302 buildings)

Year Constructed primarily in 1977

Insulation

Floor: 1.85 m² K/W
Roof: 2.36 m² K/W
Facades (excluding AOR): 1.85 m² K/W
Windows: 2.10 W/(m² K)

Consumption (per m2) Average gas consumption of 0.00406

Cluster 6 (2491 buildings)

Year Constructed mainly in 1978

Insulation

Floor: 1.74 m² K/W
Roof: 2.16 m² K/W
Facades (excluding AOR): 1.70 m² K/W
Windows: 2.08 W/(m² K)

Consumption (per m2) Higher average gas consumption at 0.00555

Cluster 7 (463 buildings)

Year Mainly built in 1991

Insulation

Floor: 1.3 m² K/W
Roof: 2.22 m² K/W
Facades (excluding AOR): 2.0 m² K/W
Windows: 1.80 W/(m² K)

In conclusion, despite the variance in high and low consumption values across clusters,
consumption patterns have a degree of uniformity. This suggests a typical usage pattern
prevalent across all buildings, regardless of factors such as construction year, insulation
values, or building size. See appendix F
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5.5. Comparing Proposed Clustering Strategy with Elbow
Method for Inter-Building Clustering

After reviewing the data, we have identified some areas where our clustering approach could
be improved. Specifically, we will focus on refining our use of Dynamic Time Warping
(DTW) to evaluate the similarity between time-series data more accurately. We will also
explore alternative clustering methods to determine if they could produce better results.
Our goal is to find the optimal number of clusters for inter-building clustering and improve
our approach’s overall accuracy and effectiveness.

Upon applying the Elbow Method to our dataset, it was determined that the optimal number
of clusters was three, representing most of the daily profiles at 41% and 49%, respectively.
In addition, a smaller cluster was identified, which constituted roughly 10% of the daily
profiles primarily composed of data collected from buildings 4501 and 4502.

Figure 5.19 presents the clustering results and the typical daily gas usage profiles. Com-
paring clusters 0 and 1, both have peak consumption times around 9-10 am and 8-9 pm.
However, their crucial difference lies in their average consumption per floor area. As shown
in Figure 5.19a, cluster 1 mainly consists of data from non-heating months, resulting in
lower overall gas consumption. Cluster 2 represents buildings 4504 and 4501 due to their
gas consumption spike at 6 am for thermal disinfection.

(a) Daily profiles of each cluster

(b) Averaged daily profiles of each cluster

Figure 5.19.: Result of the Inter-Building Clustering using Elbow Method
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Table 5.2.: Cluster Statistics

Cluster Year Highest
Proportion

Avg. Roof
Insulation
(m2 K/W)

Avg. EP1
(kWh/m2)

Avg. EP2
(kWh/m2)

Avg. EP2 EMG forf.
(kWh/m2)

Average Insulation
Floor [m2K/W]

0 2014 2.91 100.64 180.85 180.85 2.28
1 1970 2.52 122.47 195.02 195.02 1.91
2 1991 2.21 122.22 201.30 201.30 1.30

Cluster
Avg. Insulation

Facades Excl. AOR
(m2 K/W)

Avg. Facades
Ex AOR (m2)

Avg. Insulation
Windows
(W/m2 K)

Avg. Until.
Window(m2)

Non-Heating
Month

Percentage

0 2.18 13.83 2.10 10.10 0.51
1 1.84 14.26 2.10 10.59 0.50
2 2.00 29.73 1.80 9.28 0.45

In Table G.4, we present each cluster’s most common attribute values, which provide a
representative snapshot of the characteristics within each cluster. The detailed information
on each cluster’s features is in appendix G.0.3. The relative proportion of each cluster in the
dataset is illustrated in Figure 5.21. Furthermore, Figure 5.20 outlines the consumption per
unit of floor area for each respective cluster.

EP1 and EP2 are commonly used energy performance indicators in the field of building
energy analysis.

• EP1 (Energy Performance Indicator 1): EP1 is a metric representing the primary energy
consumption per unit area of a building. It quantifies the amount of primary energy
required to meet the energy demands of a building, including heating, cooling, light-
ing, and other energy uses. EP1 is typically measured in kilowatt-hours per square
meter (kWh/m²) and indicates the overall energy efficiency of a building.

• EP2 (Energy Performance Indicator 2): EP2 is another energy performance indicator
that focuses on the energy performance related to heating demand in a building. It
specifically measures the heating energy consumption per unit area. Like EP1, EP2
is also measured in kilowatt-hours per square meter (kWh/m²) and helps assess the
heating system’s energy efficiency and insulation measures in a building.

Both EP1 and EP2 are useful metrics for evaluating buildings’ energy efficiency and perfor-
mance, allowing for comparisons between different buildings or analyzing the effectiveness
of energy-saving measures.

5.5.1. Cluster Summaries

Cluster 0:

This cluster demonstrates moderate gas consumption, with an average of 0.005 per hour per
floor area(m3/hr/m2). This cluster includes predominantly recently constructed buildings
from 2014 (33.6%) and older buildings from 1970 (30.7%). These structures show high insu-
lation values and lower Energy Performance (EP) values across multiple components. Such
characteristics suggest that the buildings in this cluster were designed with a strong focus
on energy efficiency.

Cluster 1:
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The buildings in Cluster 1 have the lowest gas consumption among all clusters, with an
average gas consumption of 0.0018 per hour per floor area(m3/hr/m2). Cluster 1 is charac-
terized by buildings primarily built-in 1970 (29.3%) and 2014 (26.4%). However, this cluster
has higher average EP1 and EP2 values than Cluster 0, suggesting a higher energy consump-
tion. Despite the lower insulation levels for floors and facades (excluding AOR) compared
to Cluster 0, Cluster 1 still records the lowest energy consumption per floor area. This could
be attributed to the dominance of non-heating months in these buildings.

Cluster 2:

The buildings in Cluster 2 consume the most gas on average, with a value of 0.0109 per floor
area(m3/hr/m2). The buildings in this cluster were predominantly built around 1991. The
insulation levels for various elements like floors, roofs, facades, and windows are lower than
the other clusters. This implies these buildings may be less well-insulated, leading to higher
energy consumption per floor area.

Additional Observations:

Scheduled heating systems operating year-round can significantly contribute to gas con-
sumption, depending on the system specifics. A deeper investigation into heating schedules
and disinfection strategies can offer further insights into energy conservation measures. It’s
also worth exploring why the energy consumption per floor area in Cluster 2 is almost dou-
ble that of Cluster 0 to identify potential areas for improvement in energy performance.

Figure 5.20.: Gas consumption per floor
area Inter-Building Clusters

Figure 5.21.: Persentage of Daily usage
profiles for each Inter-Building Cluster

5.6. Seasonal Clustering: Building features in each
inter-building cluster for winter months

This subsection concentrates on the gas consumption data collected during heating months
across all meters. Our primary objective is to explore the influence of heating month varia-
tions on the patterns and energy usage trends. A comprehensive explanation can be found
in the appendix H.

The Elbow Method was employed to determine the optimal number of clusters, leading
to three as the ideal number for heating months. As depicted in Figure5.22a, clusters 1
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and 2 constitute similar proportions of total daily profiles (46% and 37% respectively, see
Figure5.23a), with meter ids evenly spread among them. Conversely, cluster 0 represents
17% of total daily profiles and is predominantly associated with buildings 4501 and 4504,
which exhibit the highest construction per floor area.

Figure5.22 exhibits the clustering outcomes and corresponding typical daily gas usage pro-
files. Clusters 1 and 2 reveal peak consumption periods around 9-10 am and 8-9 pm, but
they differ significantly in average consumption per floor area. Figure5.23b shows that clus-
ter 1 is characterized by higher overall gas consumption, while cluster 2 represents data
with lower overall gas consumption. As noted in the prior section5.22, cluster 0 experiences
a consumption spike at 6 am, attributed to the thermal disinfection schedule of the central
heating system in buildings 4501 and 4504.

(a) Daily profiles of each cluster

(b) Averaged daily profiles of each cluster

Figure 5.22.: Result of Inter-Building Clustering for winter months using Elbow Method
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5. Results

(a) Percentage of all clusters (b) Gas consumption per floor area Inter-
Building Clusters

(a) Percentage of Each Month in cluster 1 (b) Percentage of Each Month in cluster 2

Figure 5.24.

5.6.1. Cluster Summaries

Table H.4 outlines the most frequent values for each attribute within the clusters, thereby
creating a characteristic profile for each cluster. The consumption patterns across the three
clusters, namely 0, 1, and 2, indicate different levels of gas usage, with respective values of
0.011, 0.005, and 0.003 (m3/hr/m2).

Cluster 0

Cluster 0 encompasses buildings that exhibit the highest average gas consumption, clocking
in at 0.011 (m3/hr/m2). Most buildings within this cluster were built around 1991. The
insulation measures across various structural elements such as roofs, floors, facades, and
windows are noticeably lower compared to the other clusters, suggesting that these build-
ings might not be as well-insulated, leading to elevated energy consumption per floor area.
Key specifications for this cluster include:
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5.6. Seasonal Clustering: Building features in each inter-building cluster for winter months

Table 5.3.: Cluster Statistics

Cluster Year Highest
Proportion

Avg. Roof
Insulation
(m2 K/W)

Avg. EP1
(kWh/m2)

Avg. EP2
(kWh/m2)

Avg. EP2 EMG forf.
(kWh/m2)

Average Insulation
Floor [m2K/W]

0 1991 2.21 122.22 201.3 201.3 1.30
1 2014 2.98 91.17 174.96 174.96 2.41
2 1982 2.33 142.19 207.43 207.43 1.66

Cluster
Avg. Insulation

Facades Excl. AOR
(m2 K/W)

Avg. Facades
Ex AOR (m2)

Avg. Insulation
Windows
(W/m2 K)

Avg. Until.
Window(m2)

0 2.00 29.73 9.28 1.8
1 2.28 13.71 10.06 2.08
2 1.58 13.10 10.92 2.15

The average roof insulation level stands at 2.22 m² K/W. EP1 and EP2 remain consistent
across all buildings, amounting to 122.22 kWh/m² and 201.29 kWh/m², respectively. The
average insulation level for floors is approximately 1.3 m² K/W, and for facades, it is about
2 m² K/W. Window insulation averages at about 1.79 W/(m² K).

Cluster 1

Cluster 1 records moderate gas consumption, with an average value of 0.005 (m3/hr/m2).
This cluster primarily consists of newly constructed buildings from 2014 (35.7%) and older
ones from 1970 (33.7%). Key specifications for this cluster include:

Buildings display significant variations in roof insulation, with an average value of around
2.98 m² K/W. EP1 and EP2 also display variations, with average values being 91.17 kWh/m²
and 174.95 kWh/m², respectively. The average floor insulation level is around 2.4 m² K/W,
and for facades, it is about 2.28 m² K/W. Window insulation averages around 2.08 W/(m²
K).

Cluster 2

Buildings in Cluster 2 register the lowest gas consumption among all clusters, averaging
at 0.003 (m3/hr/m2). Predominantly, buildings in this cluster were constructed in 1982
(35.1%). Interestingly, this cluster displays higher average EP1 and EP2 values than Cluster
1, indicating more energy consumption. Despite the lower insulation measures for floors and
facades in comparison to Cluster 1, Cluster 2 still records the lowest energy consumption
per floor area. Key specifications for this cluster include:

1. There is a noticeable variation in roof insulation, with an average level of around 2.33
m² K/W.

2. EP1 and EP2 vary across buildings, with average values being 142.18 kWh/m² and
207.43 kWh/m², respectively.

3. The average floor insulation level is around 1.65 m² K/W, and it is about 1.57 m² K/W
for facades. Window insulation averages around 2.15 W/(m² K).

Additional Observations

Despite Cluster 1 comprising a higher percentage of newer buildings than Cluster 2 (Cluster
1: 35.7% from 2014, Cluster 2: 23.7% from 2014), and having lower EP values in general
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5. Results

along with higher insulation measures, its gas consumption remains higher than that of
Cluster 2.

This situation could be due to various factors, such as:

• Central heating: The schedule of heating systems operating year-round can signif-
icantly contribute to gas consumption. The specifics of these systems need further
investigation to identify potential areas for improvement in energy performance.

• Building age: The age of a building is often used as a predictor of energy consumption.
However, it has been observed that buildings constructed in 1982 consume less gas
than those built in 1991, despite having lower insulation values. This observation
may be attributed to the cluster results that capture months with lower consumption.
Further investigation is needed to understand this anomaly and its implications for
energy efficiency in building construction.

• Winter months: In the following figure5.24, the distribution of months for heating and
non-heating periods can be observed for both cluster 1 and cluster 2.

Cluster 2, despite having a higher overall gas consumption, seems to be more active
during the transitional periods between seasons, specifically in October, April, and
November, which often feature milder temperatures. These months collectively consti-
tute about 69.2% of the total months for Cluster 2.

On the other hand, Cluster 1 has a higher concentration of winter months, with Jan-
uary, December, and February collectively constituting about 55.2% of the total months.
These months are traditionally colder and, hence, require more heating. The increased
heating demand during these months could explain the higher gas consumption ob-
served for Cluster 1, even though it generally features more recent constructions and
better insulation levels.

Therefore, the difference in heating schedule and the concentration of heating demand
in different months between these clusters could be a significant factor explaining the
lower gas consumption in Cluster 2 compared to Cluster 1. These insights highlight
the importance of considering the building characteristics and insulation levels, the
heating schedule, and the specific months during which heating is most required when
evaluating a building’s energy performance.

5.7. Conclusion

This research has undertaken a comprehensive exploration of gas usage patterns within and
across multiple buildings with the utilization of K-Means Clustering. Several findings have
been made through evaluating and testing the proposed strategy.

After conducting Single Building Time Series K-Means Clustering, it was found that all
buildings considered, which serve as student accommodations, have similar gas usage pat-
terns. However, slight variations in their profiles were observed due to differences in heating
systems, consumption levels in different months, and housing unit types. Despite these dif-
ferences, they were minimal overall.

In Inter-Building Time Series K-Means Clustering, eight distinct clusters were identified,
each exhibiting unique characteristics regarding gas usage patterns and building features.
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5.7. Conclusion

These clusters varied in size, structure, heating methods, and insulation levels, thus influ-
encing their gas consumption levels.

The comparative analysis of our proposed strategy with the Elbow Method led us to an
optimal number of three clusters. Despite fewer clusters, this method revealed distinct
usage patterns, particularly in peak consumption times and average consumption per floor
area, emphasizing the behavior pattern consistency across buildings.

During winter, there were similar trends observed in seasonal clustering as before. The im-
pact of thermal disinfection schedules on gas consumption spikes was especially significant
in Cluster 0, highlighting the importance of heating schedules in overall energy usage. The
differences in consumption between clusters 1 and 2 are relatively large and may contribute
to the overall proportion of winter months resulting in higher consumption in cluster 1.
However, further analysis is necessary to determine the extent of this impact on consump-
tion.

In conclusion, this study offers a multifaceted perspective on building gas consumption
patterns, which are influenced by various factors, from insulation levels and building ori-
entation to heating schedules and building types. The knowledge from this research can
be instrumental in guiding energy efficiency initiatives, thereby encouraging more sustain-
able building practices. However, future investigations may explore alternative methods for
clustering daily usage profiles across different buildings.
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6. Conclusion Discussion and Reflection

6.1. Conclusion

This study proposed an efficient clustering-based method to discern the daily utility con-
sumption profiles across multiple academic structures. This approach initially determined
the average daily usage profiles of each building via time series k-means clustering. The
dissimilarity measure was gauged using dynamic time wrapping (DTW) distance to collate
the daily usage profiles of all individual buildings.

This method’s efficacy was assessed using three years’ worth of hourly power consump-
tion data sourced from 20 structures on a university campus in Amsterdam. The findings
revealed that this approach could effectively discern pertinent details relating to the behav-
ioral patterns of gas usage. This was noted in the averaged daily gas consumption profiles
identified via single-building clustering and the average of original daily usage profiles cor-
responding to the inter-building typical profiles.

The energy usage patterns identified by this proposed strategy offer insights that can be
harnessed to categorize structures exhibiting similar gas usage behaviors. This, in turn, can
guide decision-making processes for implementing efficient retrofits and enhancing perfor-
mance.

Furthermore, the information is valuable in establishing advanced energy management pro-
tocols and devising fault detection and diagnosis strategies for building structures. It sug-
gests that the proposed method holds the potential to be adapted and employed in the
energy planning of campus buildings.

6.2. Discussion

This result also outlines the research method and its questions, focusing on three key as-
pects.

• Understanding Natural Gas Consumption Patterns: The data collated aims to com-
prehend gas consumption within the Uilenstede campus and understand the energy
behavior in student accommodations.

• Influence of Building Features on Energy Efficiency: As discussed in section 5.4.1,
examining the building features within each cluster provides insights into their poten-
tial impact on consumption levels. Factors such as seasonality, occupancy schedules,
and specific features of each building (e.g., insulation, occupancy schedules, heating
system efficiency, and central heat losses), can be considered. Additionally, provid-
ing detailed and standardized features of each building can help refine the clustering
results and provide a more comprehensive understanding of each cluster.
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6. Conclusion Discussion and Reflection

The evaluation of potential energy savings considers several factors, including indoor tem-
perature, ventilation system, and heating inertia of dwellings. However, there remain some
factors that are not currently considered. These include the actual adjustments of consump-
tion practices, which could directly impact potential savings. As part of future research, it
would be interesting to delve deeper into these factors, further refining the connection be-
tween consumption practices elements and their influence on energy consumption efficiency
and potential savings.
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6.3. Reflection

6.3. Reflection

In the context of our project, the research methodology facilitated the identification of dis-
tinct gas consumption patterns in university accommodations, allowed us to spot potential
irregularities, and helped determine the factors influencing energy efficiency. These insights
from our research underpinned the design of our clustering-based strategy, providing a
broader understanding of potential approaches for enhancing building consumption.

Our proposed strategy offers a systematic framework for profiling the daily usage of build-
ings. This framework can support informed decision-making processes for the implementa-
tion of energy-efficient retrofits and performance improvements. Moreover, it could serve as
an instrumental tool in developing advanced strategies for building energy management, as
well as fault detection and diagnosis.

In sum, the project achieved its targeted innovation, demonstrating the practical application
of consumption data within a student campus, while showcasing the iterative process inher-
ent in research and design, particularly within the sphere of machine learning and clustering
methods tied to building features.

Future strategies might consider incorporating additional information such as indoor tem-
perature, building heating schedules, heat storage systems, and their efficiencies to optimize
the heating system. As occupant schedules can be challenging to obtain, one alternative ap-
proach could be comparing summer and winter consumption data to discern the differences
between indoor heating demand and hot water demand.

Understanding the utility of different types of data is crucial. While additional data can be
valuable, discerning which data is impactful and which is not, is vital. Heating demand
could potentially be calculated more accurately using a physics-based model that leverages
simulation software and information about building insulation and temperature differences.
However, the trade-off between the level of accuracy and efficiency should be considered,
especially in a complex setting such as a student campus.

6.3.1. Additional data sources

Integrating additional data sources, such as building features and weather information, can
potentially provide more detailed and meaningful clusters regarding energy consumption.
This multi-faceted approach would allow us to consider the interplay of various factors that
can impact energy use.

• Building Features: This includes information such as the year of construction, build-
ing type (residential, commercial, industrial), size (floor area, number of floors), occu-
pancy, equipment installed (heating, cooling, lighting systems), and insulation levels.
These features can affect how a building uses energy.

• Weather Data: Temperature, humidity, solar radiation, wind speed, and precipitation
are all weather factors that can greatly influence a building’s energy consumption,
particularly for heating and cooling. By incorporating weather data, you can better
understand fluctuations in energy usage and isolate weather-dependent trends.
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6. Conclusion Discussion and Reflection

• Time-Series Data Analysis: Time-series data, like hourly gas consumption data, is
rich in information. Statistical properties such as mean, median, standard deviation,
seasonality, and trend can provide insights into consumption patterns. Additionally,
advanced techniques like Fourier analysis can extract periodic patterns from the data.

However, it’s important to note that integrating more data also increases the complexity of
the analysis and may require more sophisticated machine learning or statistical techniques
to interpret the data accurately. Furthermore, data quality, availability, and the need for data
pre-processing can also be challenges in this approach.

It’s often the case that not all additional information is readily available. Focusing on effec-
tively analyzing and extracting insights from the available data is crucial in such cases. This
could involve exploring different ways of structuring the data, applying more advanced data
analysis techniques, or creating new derived variables that capture essential data character-
istics.
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A. Appendix

Table A.4.: Number of clusters and their percentage in each building

Building Number Number of Clusters Cluster ID Percentage of Each Cluster
4531 2 0 57.49%

1 42.51%
4534 2 0 53.34%

1 46.66%
4535 2 0 52.72%

1 47.28%
4520 2 0 52.65%

1 47.35%
4504 2 0 52.07%

1 47.93%
4501 2 0 53.14%

1 46.86%
4511 3 0 30.51%

1 37.69%
2 31.80%

4510 3 0 32.52%
1 28.05%
2 39.43%
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A. Appendix

Table A.1.: Building information from EPA

Building no. Construction year Complex Buildings Number of homes

4520 1970 Center Combination buildings 1,080
2010 New high-rise buildings 724
1970 VU guest house 320

4531 1970 Tower 1 High-rise building No.5-61 360
4534 1970 Tower 2 High-rise building No.155-211 360
4535 1970 Tower 3 High-rise building No.405-461 360
4501 1991 Uilenstede 2-32 High-rise building No. 2-16 92

Low-rise no. 18-22 48
Low-rise no. 24-32 80

4504 1991 Uilenstede 36-70 High-rise no. 36-50 92
Low-rise no. 52-58 24
Low-rise no 60-70 36

4510 1982 Uilenstede 102 ad Low-rise no. 102 60
4511 1982 Uilenstede 102 eh Low-rise no. 102 60
4508 1991 Uilenstede 72-98 High-rise building nr 72-86 92

Low-rise no. 88-98 102

Total 3,890

Table A.2.: Building Numbers, ID Descriptions, and Floor Areas

Building no. Complex Number Meter ID Floor Area (sq.m)

4531 4902 Uilenstede 5-61 (Toren 1) 8555
4534 4903 Uilenstede 155-211 (Toren 2) 8553
4535 4904 Uilenstede 405-461 (Toren 3) 8552
4520 4905 Uilenstede 106-460 51766
4504 40752 Uilenstede 36-70 1801
4501 40773 Uilenstede 2-32 1843
4511 40812 Uilenstede 102 e-h (trad) 1534
4510 41574 Uilenstede 102 a-d (H-inst) 1798

Figure A.1.: Calculated energy demand from DUWO
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Table A.3.: Building information from EPA

Building no. Construction year Complex Buildings Number of homes

4520 1970 Center Combination buildings 1,080
2010 New high-rise buildings 724
1970 VU guest house 320

4531 1970 Tower 1 High-rise building No.5-61 360
4534 1970 Tower 2 High-rise building No.155-211 360
4535 1970 Tower 3 High-rise building No.405-461 360
4501 1991 Uilenstede 2-32 High-rise building No. 2-16 92

Low-rise no. 18-22 48
Low-rise no. 24-32 80

4504 1991 Uilenstede 36-70 High-rise no. 36-50 92
Low-rise no. 52-58 24
Low-rise no 60-70 36

4510 1982 Uilenstede 102 ad Low-rise no. 102 60
4511 1982 Uilenstede 102 eh Low-rise no. 102 60
4508 1991 Uilenstede 72-98 High-rise building nr 72-86 92

Low-rise no. 88-98 102

Total 3,890
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C. Single Building Cluster Result

C. Single Building Cluster Result

(a) Building 4531 Uilenstede 5-61 Cluster Result - Cluster 0

(b) Building 4531 Uilenstede 5-61 Cluster Result - Cluster 1

(c) Building 4534 Uilenstede 155-211 Cluster Result - Cluster 0

(d) Building 4534 Uilenstede 155-211 Cluster Result - Cluster 1
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(a) Building 4535 Uilenstede 405-461 Cluster Result - Cluster 0

(b) Building 4535 Uilenstede 405-461 Cluster Result - Cluster 1

(c) Building 4520 Uilenstede 106-460 Cluster Result - Cluster 0

(d) Building 4520 Uilenstede 106-460 Cluster Result - Cluster 1
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C. Single Building Cluster Result

(a) Building 4504 UIlenstede 36-70 Cluster Result - Cluster 0

(b) Building 4504 UIlenstede 36-70 Cluster Result - Cluster 1

(c) Building 4501 Uilenstede 2-32 Cluster Result - Cluster 0

(d) Building 4501 Uilenstede 2-32 Cluster Result - Cluster 1
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(a) Building 4511 Uilenstede 102 Cluster Result - Cluster 0

(b) Building 4511 Uilenstede 102 Cluster Result - Cluster 1

(c) Building 4511 Uilenstede 102 Cluster Result - Cluster 2
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C. Single Building Cluster Result

(a) Building 4510 Uilenstede 102 Cluster Result - Cluster 0

(b) Building 4510 Uilenstede 102 Cluster Result - Cluster 1

(c) Building 4510 Uilenstede 102 Cluster Result - Cluster 2
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D. Typical Usage Profiles of each buildings

D. Typical Usage Profiles of each buildings

(a) Building 4531 Uilenstede 5-61 Typical Gas Usage Profiles - Cluster 0

(b) Building 4531 Uilenstede 5-61 Typical Gas Usage Profiles - Cluster 1

(c) Building 4534 Uilenstede 155-211 Typical Gas Usage Profiles - Cluster 0

(d) Building 4534 Uilenstede 155-211 Typical Gas Usage Profiles - Cluster 1
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(a) Building 4535 Uilenstede 405-461 Typical Gas Usage Profiles - Cluster 0

(b) Building 4535 Uilenstede 405-461 Typical Gas Usage Profiles - Cluster 1

(c) Building 4520 Uilenstede 106-460 Typical Gas Usage Profiles - Cluster 0

(d) Building 4520 Uilenstede 106-460 Typical Gas Usage Profiles - Cluster 1
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D. Typical Usage Profiles of each buildings

(a) Building 4504 Uilenstede 36-70 Typical Gas Usage Profiles - Cluster 0

(b) Building 4504 Uilenstede 36-70 Typical Gas Usage Profiles - Cluster 1

(c) Building 4501 Uilenstede 2-32 Typical Gas Usage Profiles - Cluster 0

(d) Building 4501 Uilenstede 2-32 Typical Gas Usage Profiles - Cluster 1
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(a) Building 4511 Uilenstede 102 Typical Gas Usage Profiles - Cluster 0

(b) Building 4511 Uilenstede 102 Typical Gas Usage Profiles - Cluster 1

(c) Building 4511 Uilenstede 102 Typical Gas Usage Profiles - Cluster 2
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D. Typical Usage Profiles of each buildings

(a) Building 4510 Uilenstede 102 Typical Gas Usage Profiles - Cluster 0

(b) Building 4510 Uilenstede 102 Typical Gas Usage Profiles - Cluster 1

(c) Building 4510 Uilenstede 102 Typical Gas Usage Profiles - Cluster 2
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E. Daily Cluster Distribution in colander
view for each cluster

(a) Building 4531 Uilenstede 5-61 Meter ID 4902 Daily Cluster Distribution

(b) Building 4534 Uilenstede 155-211 Meter ID 4903 Daily Cluster Distribution

(c) Building 4535 Uilenstede 405-461 Meter ID 4904 Daily Cluster Distribution

(d) Building 4520 Uilenstede 106-460 Meter ID 4905 Daily Cluster Distribution
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E. Daily Cluster Distribution in colander view for each cluster

(a) Building 4504 UIlenstede 36-70 Meter ID 40752 Daily Cluster Distribution

(b) Building 4501 Uilenstede 2-32 Meter ID 40773 Daily Cluster Distribution

(c) Building 4511 Uilenstede 102 Meter ID 40812 Daily Cluster Distribution

(d) Building 4510 Uilenstede 102 Meter ID 41574 Daily Cluster Distribution
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F. Inter Buildings Cluster Results

F. Inter Buildings Cluster Results

(a) Inter Building Cluster Result Cluster 0

(b) Inter Building Typical Usage Profile 0

(c) Inter Building Cluster Result Cluster 1

(d) Inter Building Typical Usage Profile 1
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(a) Inter Building Cluster Result Cluster 2

(b) Inter Building Typical Usage Profile 2

(c) Inter Building Cluster Result Cluster 3

(d) Inter Building Typical Usage Profile 3
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F. Inter Buildings Cluster Results

(a) Inter Building Cluster Result Cluster 4

(b) Inter Building Typical Usage Profile 4

(c) Inter Building Cluster Result Cluster 5

(d) Inter Building Typical Usage Profile 5
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F. Inter Buildings Cluster Results

(a) Inter Building Cluster Result Cluster 6

(b) Inter Building Typical Usage Profile 6

(c) Inter Building Cluster Result Cluster 7

(d) Inter Building Typical Usage Profile 7
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F.0.1. The percentage of meter ID in each cluster

(a) Percentage of meter id in cluster 0 (b) Percentage of meter id in cluster 1

(c) Percentage of meter id in cluster 2 (d) Percentage of meter id in cluster 3

(e) Percentage of meter id in cluster 4 (f) Percentage of meter id in cluster 5

(g) Percentage of meter id in cluster 6 (h) Percentage of meter id in cluster 7

Figure F.5.: Percentage of meter id in each cluster
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F. Inter Buildings Cluster Results

Figure F.6.: Percentage of all clusters

Figure F.7.: Percentage of all clusters
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G. Inter Buildings Cluster Results using Elbow Method

G. Inter Buildings Cluster Results using
Elbow Method

(a) Inter Building Cluster Result Cluster 0 using Elbow Method

(b) Inter Building Typical Usage Profile 0 using Elbow Method

(c) Inter Building Cluster Result Cluster 1 using Elbow Method

(d) Inter Building Typical Usage Profile 1 using Elbow Method
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(a) Inter Building Cluster Result Cluster 2 using Elbow Method

(b) Inter Building Typical Usage Profile 2 using Elbow Method
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G. Inter Buildings Cluster Results using Elbow Method

G.0.1. The percentage and consumption of each cluster

Figure G.3.: Gas consumption per floor
area Inter-Building Clusters

Figure G.4.: Percentage of Daily usage
profiles for each Inter-Building Cluster

G.0.2. The percentage of meter ID in each cluster

(a) Percentage of meter id in cluster 0 (b) Percentage of meter id in cluster 1

(c) Percentage of meter id in cluster 2

Figure G.5.: Percentage of meter id in each cluster
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Table G.1.: Cluster 0 Information
Feature Statistics

Construction Year Composition 2014 - 33.6%, 1970 - 30.7%, 2012 - 16.8%, 1991 - 9.6%, 1982 - 9.3%
Average Roof Insulation [m² K/W] Mean: 2.91, Std: 1.85
EP1 [kWh/m²] Mean: 100.64, Std: 54.30
EP2 [kWh/m²] Mean: 180.85, Std: 39.64
EP2 EMG forf. [kWh/m²] Mean: 180.85, Std: 39.64
Average Insulation Floor [m² K/W] Mean: 2.28, Std: 1.08
Average Insulation Facades Excl. AOR [m² K/W] Mean: 2.18, Std: 1.37
Until. Facades Ex AOR [m²] Mean: 13.83, Std: 5.36
Average Insulation Windows [W/(m² K)] Mean: 2.10, Std: 0.25
Until. Window [m²] Mean: 10.10, Std: 2.98
Non-heating Percentage Mean: 0.51, Std: 0.07

Table G.2.: Cluster 1 Information
Feature Statistics

Construction Year Composition 1970 - 29.3%, 2014 - 26.4%, 1982 - 20.7%, 2012 - 13.2%, 1991 - 10.3%
Average Roof Insulation [m² K/W] Mean: 2.52, Std: 1.83
EP1 [kWh/m²] Mean: 122.47, Std: 68.77
EP2 [kWh/m²] Mean: 195.02, Std: 46.92
EP2 EMG forf. [kWh/m²] Mean: 195.02, Std: 46.92
Average Insulation Floor [m² K/W] Mean: 1.91, Std: 1.22
Average Insulation Facades Excl. AOR [m² K/W] Mean: 1.84, Std: 1.40
Until. Facades Ex AOR [m²] Mean: 14.26, Std: 5.42
Average Insulation Windows [W/(m² K)] Mean: 2.10, Std: 0.25
Until. Window [m²] Mean: 10.59, Std: 2.95
Non-heating Percentage Mean: 0.50, Std: 0.07

G.0.3. Statistics features in each cluster

Table G.3.: Cluster 2 Information
Feature Statistics

Construction Year Composition 1991 - 99.7%, 1970 - 0.3%
Average Roof Insulation [m² K/W] Mean: 2.21, Std: 0.12
EP1 [kWh/m²] Mean: 122.22, Std: NaN
EP2 [kWh/m²] Mean: 201.3, Std: NaN
EP2 EMG forf. [kWh/m²] Mean: 201.3, Std: NaN
Average Insulation Floor [m² K/W] Mean: 1.30, Std: 0.00
Average Insulation Facades Excl. AOR [m² K/W] Mean: 2.00, Std: 0.08
Until. Facades Ex AOR [m²] Mean: 29.73, Std: 0.80
Average Insulation Windows [W/(m² K)] Mean: 1.8, Std: 0.0
Until. Window [m²] Mean: 9.28, Std: 0.32
Non-heating Percentage Mean: 0.45, Std: 0.02
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G. Inter Buildings Cluster Results using Elbow Method

Table G.4.: Cluster Statistics

Cluster Year Highest
Proportion

Avg. Roof
Insulation
(m2 K/W)

Avg. EP1
(kWh/m2)

Avg. EP2
(kWh/m2)

Avg. EP2 EMG forf.
(kWh/m2)

Average Insulation
Floor [m2K/W]

0 2014 2.91 100.64 180.85 180.85 2.28
1 1970 2.52 122.47 195.02 195.02 1.91
2 1991 2.21 122.22 201.30 201.30 1.30

Cluster
Avg. Insulation

Facades Excl. AOR
(m2 K/W)

Avg. Facades
Ex AOR (m2)

Avg. Insulation
Windows
(W/m2 K)

Avg. Until.
Window(m2)

Non-Heating
Month

Percentage

0 2.18 13.83 2.10 10.10 0.51
1 1.84 14.26 2.10 10.59 0.50
2 2.00 29.73 1.80 9.28 0.45
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H. Inter Buildings Cluster Results for the winter months using Elbow Method

H. Inter Buildings Cluster Results for the
winter months using Elbow Method

(a) Inter Building Cluster Result Cluster 0 using Elbow Method

(b) Inter Building Typical Usage Profile 0 using Elbow Method

(c) Inter Building Cluster Result Cluster 1 using Elbow Method

(d) Inter Building Typical Usage Profile 1 using Elbow Method

108



(a) Inter Building Cluster Result Cluster 2 using Elbow Method

(b) Inter Building Typical Usage Profile 2 using Elbow Method
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H. Inter Buildings Cluster Results for the winter months using Elbow Method

H.0.1. The percentage and consumption of each cluster

Figure H.3.: Percentage of all clusters Figure H.4.: Gas consumption per floor
area Inter-Building Clusters
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H.0.2. The percentage of meter ID in each cluster

(a) Percentage of meter id in cluster 0 (b) Percentage of meter id in cluster 1

(c) Percentage of meter id in cluster 2

Figure H.5.: Percentage of meter id in each cluster
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H. Inter Buildings Cluster Results for the winter months using Elbow Method

H.0.3. Statistics features in each cluster

Table H.1.: Cluster 0 Information
Feature Statistics

Construction Year Composition 1991 - 99.7%, 1970 - 0.3%
Average Roof Insulation [m² K/W] Mean: 2.21, Std: 0.12
EP1 [kWh/m²] Mean: 122.22, Std: NaN
EP2 [kWh/m²] Mean: 201.3, Std: NaN
EP2 EMG forf. [kWh/m²] Mean: 201.3, Std: NaN
Average Insulation Floor [m² K/W] Mean: 1.30, Std: 0.00
Average Insulation Facades Excl. AOR [m² K/W] Mean: 2.00, Std: 0.08
Until. Facades Ex AOR [m²] Mean: 29.73, Std: 0.81
Average Insulation Windows [W/(m² K)] Mean: 1.8, Std: 0.0
Until. Window [m²] Mean: 9.28, Std: 0.32

Table H.2.: Cluster 1 Information
Feature Statistics

Construction Year Composition 2014 - 35.7%, 1970 - 33.7%, 2012 - 17.8%, 1991 - 9.2%, 1982 - 3.5%
Average Roof Insulation [m² K/W] Mean: 2.98, Std: 1.89
EP1 [kWh/m²] Mean: 91.17, Std: 41.09
EP2 [kWh/m²] Mean: 174.96, Std: 33.11
EP2 EMG forf. [kWh/m²] Mean: 174.96, Std: 33.11
Average Insulation Floor [m² K/W] Mean: 2.41, Std: 0.97
Average Insulation Facades Excl. AOR [m² K/W] Mean: 2.28, Std: 1.34
Until. Facades Ex AOR [m²] Mean: 13.71, Std: 5.30
Average Insulation Windows [W/(m² K)] Mean: 2.08, Std: 0.25
Until. Window [m²] Mean: 10.06, Std: 3.09

Table H.3.: Cluster 2 Information
Feature Statistics

Construction Year Composition 1970 - 26.8%, 1982 - 35.1%, 2014 - 23.7%, 2012 - 11.9%, 1991 - 2.6%
Average Roof Insulation [m² K/W] Mean: 2.33, Std: 1.80
EP1 [kWh/m²] Mean: 142.19, Std: 76.23
EP2 [kWh/m²] Mean: 207.43, Std: 50.68
EP2 EMG forf. [kWh/m²] Mean: 207.43, Std: 50.68
Average Insulation Floor [m² K/W] Mean: 1.66, Std: 1.32
Average Insulation Facades Excl. AOR [m² K/W] Mean: 1.58, Std: 1.44
Until. Facades Ex AOR [m²] Mean: 13.10, Std: 3.02
Average Insulation Windows [W/(m² K)] Mean: 2.15, Std: 0.23
Until. Window [m²] Mean: 10.92, Std: 2.82
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Table H.4.: Cluster Statistics

Cluster Year Highest
Proportion

Avg. Roof
Insulation
(m2 K/W)

Avg. EP1
(kWh/m2)

Avg. EP2
(kWh/m2)

Avg. EP2 EMG forf.
(kWh/m2)

Average Insulation
Floor [m2K/W]

0 1991 2.21 122.22 201.3 201.3 1.30
1 2014 2.98 91.17 174.96 174.96 2.41
2 1982 2.33 142.19 207.43 207.43 1.66

Cluster
Avg. Insulation

Facades Excl. AOR
(m2 K/W)

Avg. Facades
Ex AOR (m2)

Avg. Insulation
Windows
(W/m2 K)

Avg. Until.
Window(m2)

0 2.00 29.73 9.28 1.8
1 2.28 13.71 10.06 2.08
2 1.58 13.10 10.92 2.15
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