

# Playing with thermodynamics and kinetics: Efficient conversion of CO<sub>2</sub> to chemical energy carriers

Atsushi Urakawa



#### Scale of THE problem

In New York City, 10 m CO<sub>2</sub> spheres emerging at every **0.58** seconds

http://www.carbonvisuals.com

### After 1 year, **54.3 Mtons** of CO<sub>2</sub> Only in NY city...

http://www.carbonvisuals.com

### Heterogeneous catalysis



# **CO<sub>2</sub> hydrogenation**

![](_page_4_Figure_1.jpeg)

# CO<sub>2</sub> to chemical energy carriers

#### High-pressure approach

- Hydrogenation to methanol (and DME)
- Hydrogenation to formic acid and methyl formate
- Dimethyl carbonate (DMC) synthesis from CO<sub>2</sub> and methanol

#### Unsteady-state operation

• CO<sub>2</sub> capture and conversion in one process for syngas production

![](_page_5_Picture_7.jpeg)

# CO<sub>2</sub> to chemical energy carriers

#### High-pressure approach

- Hydrogenation to methanol (and DME)
- Hydrogenation to formic acid and methyl formate
- Dimethyl carbonate (DMC) synthesis from CO<sub>2</sub> and methanol

#### Unsteady-state operation

• CO<sub>2</sub> capture and conversion in one process for syngas production

![](_page_6_Picture_7.jpeg)

#### **Methanol synthesis**

![](_page_7_Figure_1.jpeg)

Le Châtelier's principle High pressure & low temperature are favorable for methanol synthesis Thermodynamic equilibrium at CO<sub>2</sub>:H<sub>2</sub>=1:3

![](_page_8_Figure_1.jpeg)

# **High-pressure advantages**

#### **High productivity**

- Thermodynamics
- Kinetics

#### **Supercritical phase**

• High density and high diffusivity

#### **Small reactor size**

- For compressive fluids
- Economic
- Enhanced safety

![](_page_9_Figure_10.jpeg)

**NOTE**: Old methanol synthesis processes were operated at high-pressure (1920s-1960s, at 250-350 bar)

### Nanostructured Cu-ZnO (+Al<sub>2</sub>O<sub>3</sub>) catalysts

#### Prepared by co-precipitation method

![](_page_10_Figure_2.jpeg)

Kasatkin et al., Angew. Chem. Int. Ed., 46, 7324 (2007)

### Effects of feed CO<sub>2</sub>:H<sub>2</sub> ratio

**260** °C, **330** bar, GHSV = 10,471 h<sup>-1</sup>, Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>

![](_page_11_Figure_2.jpeg)

# Thermodynamic equilibrium 1:3 vs. 1:10 (CO<sub>2</sub>:H<sub>2</sub>)

![](_page_12_Figure_1.jpeg)

# **Temperature effects**

**CO<sub>2</sub>:H<sub>2</sub> = 1:10**, **330 bar**, GHSV = 10,471 h<sup>-1</sup>, Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>

![](_page_13_Figure_2.jpeg)

### Towards full conversion of CO<sub>2</sub> to methanol

![](_page_14_Figure_1.jpeg)

Stoichiometric: Gaikwad, Bansode, Urakawa J. Catal. 343, 127 (2016), EP16382062

# **High-pressure** operando XAFS

![](_page_15_Figure_1.jpeg)

- Plug-flow
- 300 °C & 330 bar
- Fused silica capillary
- Facile construction
- Tunable length
- Space-resolved study
- Relevant activity

![](_page_15_Figure_9.jpeg)

Bansode, Urakawa, et al., Rev. Sci. Instrum. 85, 084105 (2014)

### **High-pressure** operando XRD

![](_page_16_Figure_1.jpeg)

Temperature gradients @ 200 bar,  $CO_2:H_2 = 1:3$ 

+ operando Raman for C profiling

![](_page_17_Figure_2.jpeg)

#### endothermic exothermic

Gaikwad, Phongprueksathat et al., Catal. Sci. Technol., 10, 2763 (2020)

### **Direct DME synthesis**

![](_page_18_Figure_1.jpeg)

### **Direct DME synthesis**

 $CO_2:H_2 = 1:10$ , P = 360 bar, GHSV = 10471 h<sup>-1</sup> Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> + H-ZSM-5 mixed catalyst bed

![](_page_19_Figure_2.jpeg)

# CO<sub>2</sub> to chemical energy carriers

#### High-pressure approach

- Hydrogenation to methanol (and DME)
- Hydrogenation to formic acid and methyl formate
- Dimethyl carbonate (DMC) synthesis from CO<sub>2</sub> and methanol

#### **Unsteady-state** operation

• CO<sub>2</sub> capture and conversion in one process for syngas production

![](_page_20_Picture_7.jpeg)

# Formic acid

### HCOOH (FA)

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

# Formic acid: Promising energy carrier

![](_page_22_Figure_1.jpeg)

# **CO<sub>2</sub> Hydrogenation to FA**

$$CO_2 + H_2 \xrightarrow{\bullet} HCOOH$$

#### Active transition-metal (Ru & Ir) catalysts since mid 1970s

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

JessopBaikerNozakiFujitaSanfordPidkoJACS 2002Chem Comm 2007JACS 2009Nat Chem 2012ACS Catal 2013ACS Catal 2015

#### Breakthrough in the 1990s by Noyori's group

- Ru complexes
- In supercritical CO<sub>2</sub>
- · CO<sub>2</sub> as reactant and solvent
- Very high activity

Jessop, Ikariya, Noyori, *Nature*, 368, 231 (1994) Jessop, Ikariya, Noyori, *Science*, 269, 1065, (1995)

# Methyl formate (MF)

#### 2-step synthesis

![](_page_24_Figure_2.jpeg)

# **Metal effects on MF synthesis**

![](_page_25_Figure_1.jpeg)

**Continuous**, 1 wt% M (**Cu**, **Ag**, **Au**)/**SiO**<sub>2</sub>, CO<sub>2</sub>:H<sub>2</sub>:CH<sub>3</sub>OH = 4:4:1, 6000 h<sup>-1</sup>

![](_page_25_Figure_3.jpeg)

# In situ DRIFTS & Raman spectroscopy

![](_page_26_Figure_1.jpeg)

# Transient operando DRIFTS @ 5 bar

![](_page_27_Figure_1.jpeg)

#### Reducing spectral complexity: Blind source separation (multivariate analysis)

![](_page_28_Figure_1.jpeg)

Multivariate Curve Resolution (MCR)

# **Identification of surface species**

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

# **Reaction mechanism – Ag/SiO<sub>2</sub>**

![](_page_31_Figure_1.jpeg)

Corral-Pérez et al., J. Am. Chem. Soc., 140, 43, 13884 (2018)

# **Continuous FA/MF synthesis**

![](_page_32_Figure_1.jpeg)

# CO<sub>2</sub> to chemical energy carriers

#### High-pressure approach

- Hydrogenation to methanol (and DME)
- Hydrogenation to formic acid and methyl formate
- Dimethyl carbonate (DMC) synthesis from CO<sub>2</sub> and methanol

#### Unsteady-state operation

• CO<sub>2</sub> capture and conversion in one process for syngas production

![](_page_33_Picture_7.jpeg)

# **Dimethyl carbonate (DMC) synthesis**

![](_page_34_Figure_1.jpeg)

- Equilibrium limited
- Very low conversions < 1 % (even at 400 bar!)
- H<sub>2</sub>O removal is effective

### State-of-the-art

Tomishige et al., ChemSusChem 1341, 6 (2013)

![](_page_35_Figure_2.jpeg)

94 % DMC yield (12 h) in a batch reactor at 50 bar

### **Continuous high-pressure DMC synthesis**

![](_page_36_Picture_1.jpeg)

### **Continuous DMC synthesis: Pressure effects**

MeOH : 2-cyanopyridine = 2:1 (10  $\mu$ L/min), 6 NmL/min (CO<sub>2</sub>), 120 °C, CeO<sub>2</sub>

![](_page_37_Figure_2.jpeg)

Bansode & Urakawa, ACS Catalysis, 4, 3877 (2014)

### Operando visualization

![](_page_38_Picture_1.jpeg)

# Visual inspection (up to 70 bar)

 $CeO_2$ , 120 °C, 30 bar Fused silica tube ID:2 mm, OD: 3mm

![](_page_39_Picture_2.jpeg)

Fresh CeO<sub>2</sub>

After 24 h

![](_page_39_Picture_5.jpeg)

# **Origin of deactivation**

| Boiling point of 2-picolineamide: 284 °C | the source of deactivation |     |
|------------------------------------------|----------------------------|-----|
|                                          | Z-DICOUDAMIDA              | /11 |

Stoian, Bansode, Medina, Urakawa, Catal Today, 283, 2 (2017)

2-picolinamide

# Rare earth metal (REM) doping to CeO<sub>2</sub>

![](_page_41_Figure_1.jpeg)

#### Less 2-PA adsorption

Stoian, Medina, Urakawa. ACS Catal. 8, 4, 3181 (2018)

# CO<sub>2</sub> to chemical energy carriers

#### High-pressure approach

- Hydrogenation to methanol (and DME)
- Hydrogenation to formic acid and methyl formate
- Dimethyl carbonate (DMC) synthesis from CO<sub>2</sub> and methanol

#### **Unsteady-state** operation

CO<sub>2</sub> capture and conversion in one process for syngas production

![](_page_42_Picture_7.jpeg)

### Challenge in CO<sub>2</sub> conversion: CO<sub>2</sub> purity

![](_page_43_Picture_1.jpeg)

- Typical CO<sub>2</sub> concentration: **3-15%**
- Composition: CO<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O, ...

- Most CO<sub>2</sub> conversion processes require prior purification steps
- Very expensive: 25-40% increase in energy requirement for power plants

![](_page_44_Figure_0.jpeg)

# CCR catalyst (FeCrCu/K/MgO-Al<sub>2</sub>O<sub>3</sub>) $for syngas (CO_x + H_2) production REPSOL$

5.8% CO<sub>2</sub> in N<sub>2</sub> (27 mL/min) vs. 100% H<sub>2</sub> (65 mL/min) at 550 °C (107.5 s each)

![](_page_45_Figure_2.jpeg)

Bobadilla et al., *J CO*<sub>2</sub> *Util*, 14, 106 (2016)

CCR for **methanation**: Hu & Urakawa, *J* CO<sub>2</sub> Util., 25 323 (2018) CCR **with DAC**: Kosaka *et al.*, *submitted* 

#### Space- and time-resolved operando spectroscopy

DRIFTS

**XRD & XAFS** 

![](_page_46_Figure_3.jpeg)

DRIFTS cell: Urakawa et al., Angew. Chem. Int. Ed. 47, 9256 (2008)

![](_page_46_Figure_5.jpeg)

#### Spatiotemporal operando study

![](_page_47_Figure_1.jpeg)

Hyakutake et al., J. Mater. Chem. A, 4, 6878 (2016)

Pinto, Work in progress

![](_page_48_Figure_0.jpeg)

Take advantages of the thermodynamics & kinetics!!!

![](_page_49_Picture_0.jpeg)

#### Acknowledgements

TUDelft CIQ

Dr. Atul Bansode Dr. Rohit Gaikwad Dr. Andrea Álvarez Nat Phongprueksathat Donato Pinto Dr. Dragos Stoian Dr. Juan José Corral-Pérez Dr. Luis Bobadilla Dr. Tsuyoshi Hyakutake Dr. Lingjun Hu

Generalitat de Catalunya

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

![](_page_49_Picture_8.jpeg)

![](_page_49_Picture_9.jpeg)

**ETH** zürich

![](_page_49_Picture_10.jpeg)

![](_page_49_Picture_11.jpeg)