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To achieve net zero emissions by 2050, we need CO2 as a 
resource for synthetic fuels and chemicals and negative CO2 
emissions to offset hard-to-abate emissions. Hence, CO2 
capture from the environment will be indispensable. We 
present a method to indirectly capture CO2 from the air via 
seawater using bipolar membrane electrodialysis (BPMED) 
induced pH swing. Bipolar membranes generate H+ ions that 
convert seawater’s dissolved inorganic carbon (DIC) to a 
gaseous stream of CO2 while generated OH- ions precipitate 
DIC in the form of CaCO3. 
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5. Outlook
• Address efficient removal of Mg2+ and Ca2+ ions
• Extraction of gaseous CO2  suffers from poor gas purity

2. Choosing BPMED structure

3. Mg2+ ions pose a challenge

1. Motivation
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In this project, the BPMED unit is coupled with a reverse 
osmosis (RO) plant. We extract DIC from brine, concentrated 
seawater (RO waste product) and use permeate, 
demineralized seawater (RO main product) to avoid 
precipitation inside the BPMED stack. 

• The extra voltage loss
originates from the
precipitation of Mg(OH)2
on the surface of CEMs

• This scaling reduces
membrane active area
and increases
membrane resistance
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3 compartment

• 3 compartment BPMED can produce both concentrated acid
and concentrated base

• 2 compartment BPMED uses fewer membranes and liquid
channels and promises lower BPMED ohmic resistance

• Each BPMED structure changes the whole process design

• In the 2 compartment BPMED all processed seawater must
be pumped through the BPMED stack

• Liquid pumping prevents the 2 compartment BPMED design
from achieving competitive values of energy consumption

• Removing Mg2+ and Ca2+ ions from the salt compartment
reduces extra voltage loss (1xMgFreeBrine)

• Removing Mg2+ and Ca2+ ions from both salt and acid
compartments is necessary to achieve the expected voltage
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4. Promising future?

• Minimum specific energy reaches 112 kJ/molDIC
• 6x higher than thermodynamic minimum, but

approximately 2x lower than BPMED for direct air capture
• These values exclude seawater pre-treatment
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