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Abstract—High feedback gains cannot be used on all robots
due to sensor noise, time delays or interaction with humans.
The problem with low feedback gain controlled robots is that
the accuracy of the task execution is potentially low. In this
paper we investigate if trajectory optimization of feedback-
feedforward controlled robots improves their accuracy. For rest-
to-rest motions, we find the optimal trajectory indirectly by nu-
merically optimizing the corresponding feedforward controller
for accuracy. A new performance measure called the Manip-
ulation Sensitivity Norm (MSN) is introduced that determines
the accuracy under most disturbances and modeling errors. We
tested this method on a two DOF robotic arm in the horizontal
plane. The results show that for all feedback gains we tested,
the choice for the trajectory has a significant influence on the
accuracy of the arm (viz. position errors being reduced from 2.5
cm to 0.3 cm). Moreover, to study which features of feedforward
controllers cause high or low accuracy, four more feedforward
controllers were tested. Results from those experiments indicate
that a trajectory that is smooth or quickly approaches the goal
position will be accurate.

I. INTRODUCTION

High precision in robotics is usually achieved with high

feedback gains. However, there are applications in which

such high gains are undesirable or infeasible. For instance, in

the presence of sensor noise or time delays, high feedback

gains will make the robot unstable. A second example of

robots in which high gains are undesirable are robots that

interact with humans. In such robots, high feedback gains

increase the risk of injury. These examples show that it is

important to develop alternative techniques to obtain high

precisions that work even on robots with limited feedback.

To that end, multiple researchers have taken the idea of

feedback limitations to an extremum and have focused on

executing tasks with robots without any feedback. A first

example is the concept of passive dynamic walking, as

introduced by McGeer [1]. Those walkers do not have motors

and therefore no feedback control, and still walk with a stable

gait. These gaits do not rely on the motion being stable at

each point in time, rather they work due to the existence of

stable cyclic motions, called limit cycles. Such cycles were

later on combined with feedback control in so called limit

cycle walkers [2–4]. Mombaur et al. [5, 6] found stable open

loop controllers for walking and running robots by optimizing

the open loop controllers for both stability of the motion and

energy consumption.

Control without feedback has also been applied on robotic

arms. A well-known example is the work of Schaal and
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Figure 1. A photograph of the robotic arm we use to test our method: a
two DOF SCARA type arm, which has to move between the pick and the
place positions.

Atkeson [7], who studied open loop stable juggling with a

robotic arm. In their case, open loop means that the state

of the ball is not used as an input for the controller, but

the arm itself is position controlled. In previous work, we

showed that it is possible to perform open loop motions with

robotic arms that are insensitive to model inaccuracies [8, 9]

and to perform open loop stable cycles in which state errors

vanish without any feedback [10, 11]. In [11], we optimized

trajectories for open loop stability, and used an initial on-

line learning approach to improve the precision of the purely

feedforward controlled robot. In these studies, the trajectory

itself was effected by the choice of feedforward controller,

which was optimized. In the rest of this paper, we consider

the feedforward controller and the trajectory to contain the

same information, since they can be translated into each other

using the model of the robot.

Previous examples show that the most common technique

to stabilize robots without feedback is to optimize trajectories

for their open loop stability [5, 6, 10, 9]. In practice, a certain

amount of feedback will always be available, and therefore

the advantages of both control paradigms should be exploited
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to achieve higher precision [12]. However, it is unclear if

trajectory optimization is useful for robots with at least a

little feedback.

Therefore, the question we will answer in this paper is:

does the choice of the feedforward controller influence the

accuracy of systems with (limited) feedback? We will answer

this question by studying a two degree of freedom (DOF)

SCARA type robotic arm in the following way. First, in

section II we explain the methods that we used, including the

setup and task we study. Then, in section III we introduce

the Manipulation Sensitivity Norm (MSN), which we use

to estimate the lower and upper bounds of the accuracy

of the arm given a certain feedback controller. Next, in

section IV we show the results of four alternative controllers

that indicate that smooth and goal directed motions result in

high accuracy. These results are discussed in section V. And

finally in section VI, we will conclude the paper.

II. METHODS

In this section we explain the methods we used. First,

we explain the systems under consideration, including the

controller. Second, we describe the robotic arm that is used

as a test case. Third, we discuss the specific task that is

studied. And finally, we discuss the feedforward term in the

controller.

A. System description

The type of system considered in this paper is a serial chain

robotic arm moving in the horizontal plane. The equation

of motion of such a system is described by a second order

differential equation:

q̈ = f(q, q̇) +M−1(q)τ (1)

with q the absolute angles of the links of the robot, q̇ and q̈ the

angular velocities and accelerations, and τ the motor torques,

which are used as control inputs. Note that this system is

non-linear due to the Coriolis and centrifugal terms f(q, q̇),
and the configuration dependent mass matrix M . To control

the robot, both a feedback and a feedforward term are used,

hence τ = τfb + τff .

Because the goal of this paper is to investigate the effect

of feedback gain limitations, we structure the feedback con-

troller in such a way that it depends on only one parameter,

namely ω, which is the desired natural frequency of the con-

trolled system. For the purpose of constructing the feedback

controller from this ω, the system is simplified by neglecting

f(q, q̇), and decoupling the resulting system by considering

only the diagonal entries of the mass matrix at position q = 0.

In other words, only considering the simplified system

diag(M(0))q̈ = τ (2)

Note that this simplified system is only used to construct

the feedback controllers and that the system we study is

the non-linear system in Eq. (1). By using diagonal gain

matrices K and C, we obtain the following, second order

linear differential equations:

diag(M(0))q̈i = −Kq − Cq̇ (3)

Because all matrices are diagonal, the differential equations

are decoupled, which means that they can be solved sep-

arately. Finally, we choose the gains such that the natural

frequency of all decoupled parts are set to a desired value

(ω), and the damping ratio is set to 1, i.e. critically damped.

Therefore, the controller gains are set by solving:

√

k

m
= ω (4)

c

2
√
km

= 1 (5)

for each part. The natural frequency ω is then used as the

parameter to vary the gains. These feedback gains are then

used to stabilize the robotic arm around a desired trajectory:

τfb = −K(q − qdes)− C(q̇ − q̇des) (6)

The feedforward term is simply a torque as function of time:

τff (t). This term leads to the desired trajectory: q̈des =
f(qdes, q̇des) + M−1(qdes)τff (t). Because of this relation

between feedforward controller and trajectory, we use the

two terms interchangeably in this paper.

The goal of this paper is to study the effect of the feed-

forward controller on the accuracy of a rest-to-rest motion

under disturbance. Our approach to studying the effect is to

optimize the feedforward controller to minimize or maximize

this disturbed accuracy. The optimization is done using single

shooting, a basic optimal control approach.

B. Hardware setup

To test our approach, we use a two DOF SCARA type arm

[13] (see Fig. 1). This type of arm was chosen as it is the

simplest that can perform industrially relevant tasks. The arm

consists of two 18x1.5mm stainless steel tubes, connected

with two revolute joints. An end effector is connected to

the end of the second tube. The motors are placed on a

housing and AT3-gen III 16mm timing belts are used to

transfer torques within the housing. The joints are actuated by

Maxon 60W RE30 motors with gearbox ratios of respectively

66:1 and 18:1. The timing belts provide an additional transfer

ratios of 5:4 on both joints. Because the second joint is

connected to its motor via a parallelogram mechanism (see

[13]), the angle of the second arm is taken as the absolute

angle, i.e., relative to the world frame. The end effector acts

in the vertical plane and thus its motions do not influence the

dynamics of the first and second DOF. The mass of the end

effector is incorporated in the inertial terms of the second

DOF. The arm is controlled through xPC-target in MATLAB

at a frequency of 1 kHz. The parameters of this robotic arm

are listed in Table I.



Table I
THE MODEL PARAMETERS OF THE TWO DOF ARM.

Parameter Symbol Value Unit

Damping µv1, µv2 0.2, 0.2 Nms/rad

Inertia J1, J2 0.0233, 0.0312 kgm2

Mass m1, m2 0.809, 0.784 kg
Length l1, l2 0.410, 0.450 m
Position of COM lg1, lg2 0.070, 0.195 m
Motor constant kt1, kt2 25.9, 25.9 mNm/A
Gearbox ratio g1, g2 82.5:1, 22.5:1 rad/rad
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Figure 2. An example of a feedforward controller. The controller is
parameterized as a piecewise linear function with the length of every part
being 0.3 s. These torques over time are used as decision variables in the
optimizations.

C. Task description

We let the manipulator perform a cyclic pick and place

motion, with pick and place positions at [-0.2, -0.3] rad and

[0.2, 0.4] rad respectively. The time to move between the

pick and the place position is 1.05 s. Hence, the total time

of one cycle is 2.1 s.

D. The feedforward term in the controller

We test the accuracy resulting from different feedforward

controllers: minimization and maximization of the novel

Manipulation Sensitivity Norm (see section III) and both

smooth and time optimal trajectories (see section IV). The

feedforward controller has to be parameterized in order to be

able to optimize it.

The optimization schemes parameterize the torque signals

for both joints as a piecewise linear signal, with the length of

every piecewise part being 0.3 s. The space of such signals

is called U . The system states are constrained to be on the

pick and place motions at the pick and place times. This also

ensures that the motion is cyclic. Finally, the absolute value

of both torque signals is bounded by τmax = 1 Nm in order

to prevent reaching the actuator limits when when feedback

is needed. An example of such a feedforward control signal

is shown in Fig. 2.

In the remainder of the paper, the piecewise linear torque

signals are optimized for various goals. These goals are

expressed as a function C(τff), which is either maximized

or minimized. Combined with the task description, this leads

to the following optimization problem:

minimize
τff (t)∈U

C(τff )

subject to |τ(t)| ≤ τmax ∀t
q(0) = qpick

q(1.05) = qplace

q(2.1) = qpick

q̇(0) = q̇(1.05) = q̇(2.1) = [0, 0]

(7)

III. OPTIMALITY STUDY

In this section we estimate the lower bound and upper

bound of the accuracy of the arm, given a certain feedback

gain ω. First, we introduce a new measure for disturbance

and modeling error rejection, called the Manipulation Sensi-

tivity Norm (MSN). Then, we use this measure to optimize

feedforward controllers in simulation, both minimizing and

maximizing the MSN. Finally, we apply these controllers on

the hardware setup, to test their accuracy.

A. The Manipulation Sensitivity Norm

To judge the quality of a feedforward signal, a measure

is needed that quantifies the feasibility of performing a

manipulation task when there are disturbances or modeling

errors. This section explains the novel Manipulation Sensi-

tivity Norm (MSN), which is inspired by the gait sensitivity

norm used for bipedal walking robots [14]. This inspiration

comes from the insight that a pick and place task can be seen

as a repetitive motion and can therefore be analyzed using

limit cycles [10]. The effect of disturbances on limit cycles on

bipedal robots can be captured by the gait sensitivity norm,

which analyses the system based on an estimation of an input-

output relation that is defined once per step. This means that

the effect of a realistic disturbance profile during one step is

taken as input, and a performance measure as it occurs during

that step is the output. In walking robots, a possible output

is the step time. A slight modification of the gait sensitivity

norm can be used to analyze the performance of manipulation

tasks. This modification is the MSN, and requires four steps

to compute.

1. Defining output indicators

2. Defining a set of realistic disturbances as input signals

3. Obtaining the input to output relation

4. Computing the appropriate system norm of the input

output relation.

The first step is to define output indicators. For pick and

place tasks, output indicators are a measure of the distance

of the arm to the desired path. To make the analysis as clear

as possible, we use the error in the absolute angles of the

links at the pick position, which is the initial position of the

cycle. The MSN will compute the gain from a set of realistic

disturbances to this output measure and is therefore a measure

of accuracy when moving under real world disturbances.

The next step is to define the disturbances, which are used

as inputs. For our analysis, we use three disturbances: a

torque on the first link during the first 0.15 s of the cycle,



a varying end-effector mass that represents a product that

has a different weight than expected and a varying viscous

friction coefficient. These inputs have a nominal value of 0,

and their value is allowed to change every cycle. Note that

the last two inputs, mass and friction, are typically seen as

parameter variations. For this linearized analysis, there is no

mathematical distinction between such a parameter variation

and a more traditional disturbance such as the torque. This

justifies treating parameter variations and disturbances in the

same way. Do note however, that the parameter uncertainty

is lasting, which should be reflected when computing the

input-output gain.

In the third step, the input-output relation in Eqs. 8-9 are

obtained using a finite difference scheme. At the beginning of

every cycle, very small (10−5) initial condition disturbances

are used to obtain a Jacobian matrix A, by comparing the

initial state to the state after exactly one cycle. Then, small

values (10−5) of the inputs are used to obtain the input

to state Jacobian B. Finally, the relation to the output is

linearized, again both for initial error and inputs, obtaining

C and D respectively. The procedure is described in more

detail in [14]. We now obtain a state space system S of the

form:

x(n+ 1) = Ax(n) +Bu(n) (8)

y(n) = Cx(n) +Du(n) (9)

where x is a vector containing the errors in the state after each

cycle and y is a vector containing the errors in the positions

at the pick position. In this linearized discrete system, the

matrix A depends on the system dynamics and the chosen

trajectory and B depends on how the inputs influence the

state error. Note that for our choice, the output indicators are

already linear in the state and D = 0.

The last step is to compute an appropriate norm, which

is the main difference between the gait sensitivity norm

and the MSN. For walking, it is important that the walking

motion recovers to normal after the disturbance stops. For

manipulation, the disturbances tend to last, meaning we are

interested in the maximum error in the situation where the

disturbance continues to exists, The appropriate norm is thus

the induced L∞ norm:

‖S‖L∞
= sup

u 6=0

‖y(u)‖∞
‖u‖∞

(10)

What remains is to compute ‖S‖L∞
. The L∞-induced norm

is the same as the L1 norm of the impulse response [15, 16].

Rather than computing the complete L1 norm, we approxi-

mate it by taking the sum of the first N steps, with N = 100,

chosen sufficiently large. Take gij(n) as the impulse response

from input j to output i. Now the Manipulation Sensitivity

Norm can be written as:

MSN = ‖S‖msn = max
i

N
∑

n=0

∑

j

|gij(n)| (11)

The MSN is the amount of error given a unit input and there-

fore could have radians as unit. However, the specific input
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Figure 3. A visualization of the calculation of the MSN. a) The impulse
response of the system. b) The sum of the absolute values of the impulse
response. The MSN can be interpreted as the amount of error given a unit
input, which would have radians as unit. Since the input for which the error
is largest differs per cycle, we chose to not use a unit for the MSN.

for which the error is largest differs per cycle. Therefore,

we chose to not use a unit for the MSN. The calculation of

the MSN is visualized in Fig. 3 and the overall procedure is

summarized in Algorithm 1.

When computing the MSN, we should scale the size of

the inputs in order to take into account the difference in

the effect they have and the realistic sizes of those inputs.

Since the expected disturbances depend heavily on the system

under consideration, we choose a different approach, which

highlights the capability of the MSN to take into account

multiple disturbance sources at the same time. The input sizes

are scaled such that the MSN of each of the three inputs

considered separately is 1, when feedback gains specified by

ω = 1 s−1 are used for the MSN minimization.

Algorithm 1 Calculating the MSN

1: procedure MSN(τ(t), ω,N )

2: Determine [q(t), q̇(t)] ⊲ Eq. (1)

3: Determine K ⊲ Eq. (4)

4: Determine C ⊲ Eq. (5)

5: Determine A ⊲ Finite difference on q0
6: Determine B ⊲ Finite difference on u
7: for j = 1..J do

8: for n = 1..N do

9: Determine gij(n) ⊲ Eqs. 8-9

10: end for

11: end for

12: Determine MSN ⊲ Eq. 11

13: return MSN

14: end procedure



0 1 2 3 4 5 6 7 8 9
0

4

8

12

16

20

 (1/s)

M
S

N
 (

-)

Maximized MSN
Minimized MSN

Figure 4. The minimized and maximized MSN as function ω, as found in
simulation.

The overall optimization for minimizing/maximizing the

MSN is described by eq. (7), with as cost function

C(τff = ±MSN(τff ) (12)

We used fmincon with 20 initial conditions determined by

multistart in MATLAB R© to solve the optimizations.

B. Simulation results

Fig. 4 shows the minimum and maximum MSN that were

obtained as functions of the natural frequency parameter ω.

This figure shows what was to be expected: increasing the

gains results in a decrease of the MSN. The figure shows both

the maximum and the minimum MSN that were obtained by

optimization. At low gains, the maximization does not result

in stable controllers, meaning that the MSN is infinitely large.

This instability shows that at these gains the unstabilizing

dynamical effects are larger than the stabilizing effects of the

feedback controller. For ω > 5 s−1, the difference between

the cycles with minimized and maximized MSN is negligible.

The red lines in Fig. 6a and 6b correspond to two

optimized cycles. The cycle in Fig. 6a was obtained by

maximizing the MSN and the cycle in Fig. 6b was obtained

by minimizing the MSN. These cycles were obtained for ω
= 2.7 s−1. The corresponding values for the MSN are 12.2

and 1.6 respectively. Finally, Fig. 7 shows the time evolution

of the torque signals, the feedforward term of which was

obtained in simulation.

C. Hardware results

Fig. 5 shows the position error of the end effector at the

pick position during hardware experiments as function of the

natural frequency parameter ω. These errors are the average

error over 10 cycles after letting the robotic arm converge

for 2 cycles initially. The standard deviation over these 10
cycles is negligible. Logically, the errors decrease when the

feedback gains are increased.

At the pick position, the error of the MSN minimizing

trajectory is 0.3 cm at ω = 2.1 s−1, in between ω = 2.1 s−1

and ω = 4.5 s−1, the error of that trajectory is approximately

2.5 cm and for ω >4.5 s−1, the error drops to approximately

0.3 cm again. The error of the maximized-MSN-trajectory is
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Figure 5. The errors at the pick position as function of ω, as found
in hardware experiments. The errors are shown for trajectories with a
minimized MSN and a maximized MSN.
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Figure 6. State space plots of the optimization and hardware results for
ω =2.7 s−1. a) The cycle with a maximized MSN. b) The cycle with a
minimized MSN.

larger than 2.5 cm, for almost the whole range of gains. Only,

for ω = 7.7 s−1, the error becomes 1.8 cm. This significant

difference between the errors of these two trajectories means

that the choice for the feedforward controller is important for

the accuracy of the task execution.

Fig. 6 shows two typical sets of hardware results. These

results were obtained for a controller with ω = 2.7 s−1.

The plots show the state space trajectories for a maximized

MSN and a minimized MSN. They show that the three

trajectories differ significantly: the trajectory with maximized

MSN covers a larger part of state space than with minimized

MSN. The measurements on the prototype show the 10 cycles

used in determining the errors used in Fig. 5. It can be seen
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Figure 7. The torques as functions of time for the results with ω =2.7
s−1. a) Torques for the cycle with a maximized MSN. b) Torques for the
cycle with a minimized MSN.

that the arm has converged, and only very little variation

between cycles occurs.

Fig. 7 shows the torques for the two different feedforward

controllers with ω = 2.7 s−1. The plots show both the

feedforward torque and the actual torque. The difference

between the two is due to the feedback controller. The plots

clearly show that the feedback control effort is larger when

following the trajectory with maximized MSN (Fig. 7a), than

when following the trajectory with minimized MSN (Fig. 7b).

IV. ALTERNATIVE MOTION PROFILES

In the previous section, the feedforward controllers under

study were determined by minimizing or maximizing the

MSN. To further study which feedforward controllers lead

to accurate motions, four more methods to generate a feed-

forward controller will now be compared. The simulation and

hardware results for these controllers are found in Fig. 8 and

9 respectively.

The first of the controllers is used to compare the mini-

mized and maximized MSN trajectories to a trajectory that

is standard in industry: a trapezoidal velocity profile. The

trapezoidal velocity profile is created by dividing the time to

move between pick and place position in three equal parts:

one part each for acceleration, constant velocity and decel-

eration. The same procedure is used to move from place to

pick position. Both the MSN in simulation, and the position

error on the hardware show that this trapezoidal trajectory has

accuracy closer to the minimized MSN trajectory than to the

maximized MSN trajectory. In hardware results, the error of

the trajectories with minimized MSN and trapezoidal velocity

profile are not even significantly different.

So, why does this standard controller perform as accurate

as the optimally accurate one? There are two potentially

beneficial aspects to this trapezoidal trajectory. First, it is

relatively smooth, without large accelerations back and forth.
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Figure 8. The MSN as found in simulation experiments. The errors are
shown for six types of trajectories.

Second, it approaches the goal directly, and is already close

to the goal position for the last part of the motion. To

test if these two effects are indeed beneficial, we compare

feedforward controllers with these two specific aspects.

If smooth controllers lead to accurate motions, it should

be impossible to make an inaccurate motion with a smooth

controller. To test this, we performed the MSN-maximization

with a smoothness constraint. Here we took the smoothness

as a maximal torque time derivative of tf/4 Nm/s. This rate

allows the torque to go from maximum to minimum and back

in one cycle. As can be seen in Fig.9, this maximization

with constraint has similar accuracy as the minimization in

hardware results. This indicates that smoothness is indeed

beneficial for accuracy.

To test whether a quick motion towards the goal leads to

low errors, we optimized a cost function that squares the error

with the goal position. This new optimization is otherwise the

same, but minimizes the following cost function:

C(τff ) =

∫ tf

0

(q(τff )− qg(t))
T (q(τff )− qg(t))dt (13)

With qg(t) being the way-point position when t < tf/2, and

the initial position otherwise. Again, the results show that

this squared error minimization gives accuracy close to the

minimized MSN trajectory, as expected.

In order to confirm these results, we also tested the motion

with a maximize the squared error function? Because this

would lead to a motion that moves away from the target, and

only reaches the target at the very last moment, this motion

is expected to result in relatively large errors. Furthermore,

moving away, and then rapidly towards the target is not very

smooth, which is also likely to affect the accuracy adversely.

Figs. 8 and 9 show that this prediction is indeed true. The

trajectory performs worse than the other trajectories, although

still not as poorly as the maximized MSN trajectory.

V. DISCUSSION

In this section, we discuss the results as presented in

this paper. As can especially be seen in Fig. 5, the choice
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Figure 9. The errors at the pick position as function of ω, as found in
hardware experiments. The errors are shown for six types of trajectories.

for a certain trajectory is important for the accuracy that is

achieved. For high gains (ω > 3.2 s−1), this choice makes

the difference between a negligible position error and an error

of multiple centimeters. For medium gains (1.9 s−1 < ω <
3.2 s−1), this choice makes the difference between negligible

position errors and errors between 5 and 27 cm. And for low

gains (ω < 1.9 s−1) this choice makes the difference between

stability and instability.

The simulation and hardware results match well. Particu-

larly, the shape of Figs. 4 and 5 are similar. There are however

two differences. First, the difference in error between the

trajectories does not converge to 0 when the gains increase

in hardware experiments, whereas the difference in MSN

does convergence in simulation. The second difference is the

hump in error and MSN that occurs around ω = 3 rad/s.

These differences are small and are caused by unmodeled

dynamics that were not taken into account in our choice

for disturbances in the MSN-computation. The most likely

effects are elasticity in the timing belts and backlash. Because

the simulation and hardware results are so similar, the MSN

is a good approximation for accuracy, and can be used to

find feedforward controllers in cases when feedback gains

are low, yet accuracy is important.

The shape of Figs. 8 and 9 are similar, but there are clear

differences. The first and most important difference is that

only two control strategies lead to errors that are significantly

larger than the minimum error. Those two control strategies

are the maximized MSN and the maximized squared error.

These results suggest that there are two principles that lead to

small errors: smoothness and being close to the goal position

before the end of the motion. Therefore, we expect that other

common profiles such as minimal energy, minimal torque,

minimal acceleration and minimal jerk will also perform

well. The second difference is that in the hardware results,

the accuracy of the MSN-optimized feedforward controllers

only give an estimate of the range of possible accuracies.

This can be seen in Fig. 9, in which the minimized MSN

controller is not the most accurate one for 2.1 s−1 < ω <
4.5 s−1.

In simulation, there are two points where one of the

comparison trajectories has an MSN that is outside the

range given by the MSN minimization and maximization.

Specifically, this occurs for the In both these instances, the

difference is small, and caused by the choice of step size

in simulation. In optimization, a sampling time of 0.01 s is

used to save computation time. For Fig. 8, a sampling time of

0.001 s was used, because this aligns with the robot hardware.

As ω goes to zero, both the MSN and the error in hardware

results get very large. This is logical since the system without

feedback is not stable. Fig. 5 shows that for feedback with

ω < 1.8 s−1, the error is larger than 2.5 cm and therefore

picking up objects of reasonable size will be difficult. If

the feedback gains cannot be increased, more mechanical

feedback has to be implemented. The most straightforward

approach is to place springs at the joints. In our previous

work [10, 11], we showed that with a spring at the first joint,

tasks can be performed stably even when ω = 0.

The results from this paper can be improved by incor-

porating the feedback in a Repetitive Control (RC) scheme

[17]. In an RC scheme, the feedforward controller is adjusted

based on the state error in the previous cycle. In the most

simple form, the feedforward controller in the current cycle

is equal to that in the previous cycle plus the feedback that

was applied. Such an RC scheme was used before on robotic

arms to learn open loop stable trajectories [11].

There is an interesting parallel between the controller we

use in this paper and human movement control. Similar

to our controller, humans also exploit the advantages of

both feedforward and feedback in order to optimize their

performance [18]. For fast motions, humans cannot rely on

feedback at all, due to the large time delays (typically 150

ms for humans [19, 20]). Therefore, they have to rely on

feedforward, in which control signals are generated based on

the prediction of an internal model [21]. In slower motions,

more feedback is used to correct for inaccuracies in the

internal model and external disturbances.

Another interesting parallel with human motion control is

the fact that smooth motions perform well. In human motion

control, there is an ongoing debate about the cost function

humans use optimize their motions. Suggested cost functions

are the maximum jerk [22, 23], change of torque [24] and

sensitivity to motor noise [25]. Other researchers suggest that

humans perform some kind of stochastic optimal control in

which variability in task irrelevant directions is ignored [26].

The problem in this debate is that all cost functions result

in approximately the same smooth motions. Similarly, we

expect that all smooth motions that result from such cost

functions will perform well in terms of accuracy.

VI. CONCLUSION

In this paper we focused on the question ‘does the choice

of the feedforward controller influence the accuracy of sys-

tems with (limited) feedback?’. The answer to this question

is: ‘yes, the choice for a certain feedforward controller makes

the difference between an accurate and an inaccurate task

execution.’ The feedforward controller was tuned using the

novel Manipulation Sensitivity Norm, which measures the



accuracy while taking into account disturbances and model

errors. Feedforward controllers that were either minimized or

maximized for this norm were implemented on our robotic

arm. Results show that for a large range of feedback gains,

the error varies between 0.3 and 2.5 cm, depending on the

choice for the feedforward controller. Further experiments

with alternative feedforward controllers indicated that a tra-

jectory that is either smooth, or approaches the goal position

quickly, will be accurate. Therefore, the commonly used

trajectory with a trapezoidal velocity profile performs well

and is a good choice in terms of accuracy.
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