TU DELFT
FACULTY OF MECHANICAL, MARITIME AND

MATERIALS ENGINEERING (3SME):

Review of Background Knowledge
for the Course “Advanced Mechanics”

Authors:
Heike VALLERY
Arend SCHWAB

Transcription/Editorial
support/Review:

Pier DE JONG

Bram SmiIT

Johan SCHONEBAUM
Frederik LACHMANN
Jaap MEIJAARD

Fred vAN KEULEN

July 14, 2020
Version 2.2

Delft
e t University of
Technology



Foreword

This document is meant to serve as part of the preparation for the
course “Advanced Mechanics” at the faculty of 3ME at TU Delft. It
highlights several mathematical concepts that are critical background
knowledge and that we have found in the past to be particularly hard
for many students, hindering their ability to adequately participate in
the course. Therefore, this document does not claim completeness and
is merely meant as additional support during the preparation phase.

First, please consult a linear algebra book to familiarize yourself with
the definition of a vector, the graphical and numerical calculation of its
magnitude, and addition of vectors. Also, make sure you are fully aware
of the meaning and applications of dot and cross product. For vector
definitions and operations as addition, inner product, vector product in
a Cartesian coordinate system space of up to 3 dimensions, an overview
is found in Chapter 12 and appendix B of [1] or Chapter 1 of [2, 3].
For vector operations in an N-dimensional space including coordinate
transformation, see Sections 4.1-4.7 of [4] or Sections 3.5, 3.6, 6.1, and
6.2 of [2, 3]. Furthermore, a combination of matrix and vector opera-
tions in an N-dimensional space can be found, for example, in Chapter
1 and Sections 6.1-6.3 of [4] or Chapter 2 and Section 5.1 of [2, 3].
Basic matrix properties and operations such as transpose, diagonality,
inverse, singularity, and structure are introduced in Sections 2.1-2.4 of
[4] or Sections 3.1-3.3 of [2, 3], while the determinant and its relation
to the inverse are discussed further in Chapter 3 of [4] or Section 4.2
of [2, 3]. Eigenvalues and eigenvectors are, for example, discussed in
Sections 5.1, 5.2, and 5.5 of [4] or Sections 4.1, 4.3, and 4.3 of [2, 3],
while symmetry and (semi-)positive/negative definiteness are presented
in Sections 7.1 and 7.2 of [4] or Section 5.5 of [2, 3]. A brief overview
of some concepts is found in Section 0.2 of this document.

Second, please consult a book on mathematical analysis to review
differentiation and integration rules for scalars and vectors and make
sure you know the difference between taking the time derivative and
the partial derivative. Calculus of (common) linear and nonlinear func-
tions of one variable (including interpolation and extrapolation) can be
found for example in Chapter 1 of [1]. Moreover, calculus of limits and
differentiation (including standard derivatives of common functions) is
presented in, for example, Chapters 2 and 3 of [1]. Functions with
multiple variables and their partial derivatives are discussed in Sections
14.1 and 14.3 of [1], with the gradient operator further discussed in 14.6
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of [1]. Furthermore, Taylor series are presented in Section 11.10 of [1],
and integration is covered in Chapter 5 of that same book with line,
surface, and volume integrals in Sections 16.2, 16.7, and 6.2-6.3 respec-
tively. A brief overview of some concepts is found in Section 0.3 of this
document.

Third, the course will rely on background knowledge in mechanics,
for example in statics. A brief overview of some critical generic concepts
is found in Section 0.4. Also, because this is a very frequent source of
errors, the document contains some remarks on units in Section 0.1.4.

Finally, this course will make extensive use of the summation symbol
and index notation. More information on this is presented in appendix
E of [1] or Appendix A of [2, 3]

Be aware that the summary contained in this short document cannot
be exhaustive.
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0 BACKGROUND KNOWLEDGE 4

0 Background Knowledge

0.1 Notation

0.1.1 Typesetting of Scalars, Vectors, and Matrices
Scalars, vectors, unit vectors and matrices in this book are typeset as

depicted in Table 0.1.

Table 0.1: Notation of scalars, vectors, unit vectors and matrices

This book Handwriting

Scalars F F
Vectors F E
Unit vectors é &
Matrices R r

Note that we often use the same letter when we refer to a vector’s
magnitude, so for example a could be used to refer to the magnitude
la| of a vector a. However, such a relationship must still always be
explicitly defined.

0.1.2 Indices

A position vector that points to a point A from a point P will be denoted
as 74/p (which reads: “position of A with respect to P”). Analogous
notation will be used for other relative quantities, such as linear or
angular velocity.
To indicate components of m-dimensional vectors, we use the index
notation:
r= (7"1 Ty ... rm)T. (0.1)

To indicate components of m x n-dimensional matrices, we use the index
notation:

aill ai19 e A1n
a1 as ... Qa9

A= m . (0.2)
aml am2 ... Omn
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0 BACKGROUND KNOWLEDGE 5

In case we operate in R3 and with Cartesian coordinate systems, we
also often use the names of the axes as indices (for example x, y, 2)
instead of the numerical values 1, 2, 3, to allow quick association.

0.1.3 Drawing Vectors

Concerning vector notation in drawings: If we label an arrow with a
vector symbol (so a boldface variable), for example F', then this label
alone already refers to the definition of the vector including its mag-
nitude and direction. The direction drawn for the arrow is merely an
illustration. This notation is particularly used if the direction of the
vector is unknown or changes.

In contrast, if we label the same arrow with a scalar variable name
F (so typeset regular), this scalar value is the magnitude of the vector,
and the direction of the vector is defined by the drawn direction of the
arrow. We do allow this scalar value F' to take on a negative value
(even though the magnitude of a vector is strictly seen always positive),
in order to enable inversion of the vector’s direction later on: This
way, when drawing Free-Body Diagrams, we do not need to know yet
in which direction a vector (component) points, we only need to know
its line of action. This also implies that an arrow labeled with —F is
equivalent to an arrow pointing in the opposite direction and labeled
F.

O Example 0.1 The same forces of a system are drawn in three different
ways in Figure 0.1. If a force vector arrow points upwards and is labeled
by N, then the reaction force (following Newton’s third law) to this vector,
drawn as pointing downward, must be labeled with a —IN' (note the minus
sign), to make clear that the direction is opposite (Figure 0.1, left). If the
same upwards-pointing vector is labeled by a scalar N, then the reaction
force to this vector should still be drawn as pointing downward, but it must
then be labeled by N as well, not by —N (Figure 0.1, center). Alternatively,
and still formally correct, one could draw the same reaction force vector as
pointing upward and label it by —N. However, this is discouraged as it can
be confusing (Figure 0.1 right).
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0 BACKGROUND KNOWLEDGE 6
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Figure 0.1: Force vectors, symbols, scalars, and arrows. All drawings are correct,
but the one on the right is confusing.

Particularly when a vector is split into components along specific axis
directions, scalar labeling will be used for these components.

In order to indicate a vector direction when it is pointing inside or
outside of the paper plane (Figure 0.2, top row), the vector is drawn
as a circle with a cross or a dot inside, following the analogy of a dart.
More specifically, we indicate vector components pointing into the plane
by ® and those pointing out by ©.

Further, the right-hand rule states that the curled fingers of one hand
indicate the positive direction of an angle or a moment, when the thumb
points into positive axis direction (Figure 0.2, center). Finally, vectors
that encode rotational information, such as moments, will be drawn as
double arrows (Figure 0.2, bottom row).

®<'%==\A>=—®

Botow Vrew ’l-ep View

o . o

Figure 0.2: Notation for a vector that is perpendicular to the plane of drawing imag-
ined as a dart (top), the right-hand rule to indicate positive direction of
a rotation/moment about an axis (center and bottom).
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0 BACKGROUND KNOWLEDGE 7

0.1.4 Units

In mechanics, we often deal with quantities that have a measurement
unit, such as forces, velocities, or positions. Each such quantity is in
fact the product of a number and a measurement unit. In vectors or
matrices, each component has a quantity value. Note that generally
the letters of units are written in roman (upright), while those of scalar
physical quantities (variables) are italic.

O Example 0.2 Force can be expressed as the product of a numerical
value and the measurement unit Newton: FF=3-N =3N

Expressions may contain mixtures of quantities that are given with
their numerical value and quantities that are given only as variables.
Also in those cases, one must pay attention to keep in mind both factors
(numerical value and unit) that compose each quantity, and not to insert
or omit units.

O Example 0.3 Given a particle of mass m = 3kg and having accelera-
tion vector a, the resultant force vector F' on the particle can be calculated
as:

Correct is: F=m-a =3kg-a.

Incorrect is: F=3<aN.

O Example 0.4 In 2D, a particle rotates with an angular velocity of
magnitude w = 2rad/s about point P. Its angle 6 depends on time ¢:

0=w-t=2rad/s-t. (0.3)

At t = 3, the particle’s angle is calculated as:

f=w-t=2rad/s-3s=2-3rad/s-s = 6rad. (0.4)

Following the ISO norm [5], for quantities that have a measurement
unit, the numerical value of a quantity @ is denoted by {@}, and the
measurement unit is denoted by [Q]. Therefore, the numerical value can
also be denoted as {Q} = Q/[Q].

O Example 0.5 Consider a quantity value of mass m = 3.5kg. Its nu-
merical quantity value is {m} = 3.5, and its measurement unit is [m] = kg.
Note that the same quantity value can be expressed as 3500 g. Then, the
numerical quantity value {m} = 3500, and [m] = g.

A common mistake is inconsistent use of square brackets. Such brack-
ets only have meaning when placed around the physical quantity. They
should not be placed around the unit.
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0 BACKGROUND KNOWLEDGE 8

O Example 0.6 Consider time t:
Good use is: t/s =4, or [t] =s.

Not good use is: T=4Ig], or}@.

Incorrect square brackets are often found in axes labels of plots. Fol-
lowing the SI [6], a correct label is (for the example of time): ¢/s. One
can also use round brackets if needed, like “time ¢ (in s)”.

O Problem 0.1 Which of these expressions make correct use of units,
for mass m, time ¢, force F', angular velocity w, and angle 87 Correct the
mistakes.

e m =20

e m=3N

e F=3-m|[N]
e F'=20N

o [m] =kg

e m/[m] =20

e t=23s

e w=2rad/s

e 0=w-t=2-1[g
0 =w-t |w] =rad/s, [t] =s, [0] = rad
{m} =20

o w=1t2

o w=1rad/s-t?

e w=1rad/s? 2

e f(t) =cos(lrad/s-t)
(t)
(t)

g
e h

ot
sin(wt) = sin(2t)

A general advice for solving problems is to work as long as possi-
ble with variables, and only to substitute these variables with given
numbers and units at the very end of a problem, in the final solution
equation. Also, it is almost always helpful to use units as part of plau-
sibility checks for a particular calculation.
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0 BACKGROUND KNOWLEDGE 9

0.2 Vector and Matrix Algebra
0.2.1 Vector Addition

Vectors are added (Figure 0.3) by adding their individual components.
For the addition of vectors, the same rules apply as for the summation

of scalars.
b
< \
| "

Figure 0.3: Vector addition: The vector ¢ is found by adding a and b.

O Example 0.7 The meaning of vector addition is particularly intuitive
for position vectors: Assume for example that the vector r 4,0 specifies the
location of a point A with respect to another point O, and that the vector
T ¢/ 4 specifies the location of a point C' with respect to A. Then, the position
vector /o, which points from O to C, is given by rc/,0 = ra/0+7c/a-

O Problem 0.2 In Figure 0.3, assume the components of ¢ and a are
known. How do you calculate b?

H O Problem 0.3 If you know r¢/0, how do you calculate ro,c?

0.2.2 Multiplication of a Vector with a Scalar

Multiplication of a vector with a scalar means multiplication of each
single component of the vector by this scalar. This operation changes
the vector’s magnitude, but it does not change its direction. So, multi-
plication with a scalar only “scales” a vector.

Accordingly, one can also represent each vector by a multiplication
of a scalar value (its magnitude) and a unit direction vector. This
is particularly helpful when solving problems where the direction of
a vector is known, but its magnitude is not. This situation occurs
frequently in mechanical systems.
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0 BACKGROUND KNOWLEDGE 10

O Problem 0.4 Consider again Figure 0.3, and assume we are in a 2-
dimensional space (so in R?). Also assume that we know the vector a in-
cluding its magnitude and direction, but for the vectors b and ¢ we only
know their directions, given by the unit vectors &, and é., respectively. We
are now interested in setting up the equations that allow calculating the
respective magnitudes b and c¢ of the vectors b and c.

Problem 0.5 Consider Problem 0.4, now assume the vectors are de-
fined in R®. Will there always be a solution for b and ¢? If not, what is/are
the condition(s) on the given variables such that a solution exists?

0.2.3 Cross Product

The cross product axb is a vector perpendicular to both vectors a and b.
The cross product of two vectors is the zero vector if both vectors have
the same or the exact opposite direction (i.e. the vectors are linearly
dependent). The direction of the cross product is determined by the
right-hand rule (Figure 0.4).

2

b

e=2xh Q

Figure 0.4: Right-hand rule

The magnitude of the cross product equals the area of the parallelo-
gram with the vectors as sides, see Figure 0.5. So, the magnitude of a
cross product ¢ of the vectors a and b,

c=axb, (0.5)
can be calculated using:
le| = |al|b] sin(#), (0.6)

whereby 6 € [0, 7] is the angle enclosed by the two vectors.

Advanced Mechanics WB2630 (C) Vallery /Schwab 2020 1(!U Delft
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c =

axh

B
R

\
LAN

o

Figure 0.5: The magnitude of the cross product of vectors a and b describe the area
of the parallelogram, spanned by a and b, which are separated by angle
0.

H O Problem 0.6 What is the cross product of a vector with itself?

The cross product is used very often in dynamic calculations, for
example for moments, angular momenta etc..
When using the vector components

Qg by Ce
a=|ay |, b=1b,], c= ¢, (0.7)
ay b, Cs

the cross product is calculated by:

¢z = ayb, —ab, (0.8)
¢y = ayby — azb, (0.
C, = azby — ayb,. (0.10)

From its definition, it becomes evident that the cross product of two
vectors exists only in three-dimensional spaces. The cross product is
anti-commutative, meaning that @ x b = —(b x a).

@ Problem 0.7 Use the definition of the cross product to show that
axb = —(bxa).

0.2.4 Dot Product

The dot product of vectors a and b, as illustrated in Figure 0.6, is defined

as
c¢=a-b:=|a||b|cos(d), (0.11)

where 6 is the angle between a and b. Note that the dot product results
in a scalar value ¢, so it is also called the scalar product.
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Figure 0.6: Dot product

From this formulation and Figure 0.6, a very important property can
be seen: The scalar product can be regarded as the scalar projection b,
of vector b onto a, multiplied by the magnitude a of a:

a-b=ab,. (0.12)

So, to calculate the component of a vector b in a particular direction,
one takes the scalar product of b with a unit vector (so a vector having
a length equal to 1) in that particular direction. It also implies that if
two vectors are orthogonal (perpendicular), their dot product is zero.

O Problem 0.8 Consider a vector that points in the direction of the
x axis. Use the scalar product to calculate the projection of this vector onto
the y axis.

When using the same components as in (0.7), the dot product resolves
to
a-b=a;b; +ayb, +a.b.. (0.13)

So, another way to write the dot product is via matrix notation:
a-b=a"b. (0.14)

Note that the dot product does not only exist in R?, but also in any
other dimension. More broadly in R", it is defined as

a-b=> ab. (0.15)
=1

In contrast to the cross product, the dot product is commutative (which
can be seen directly from (0.13)):

a-b=>b-a. (0.16)
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0 BACKGROUND KNOWLEDGE 13

H O Problem 0.9 Try calculating dot products and cross products by using
MATLAB™,

0.2.5 Basic Matrix Definitions

Among other interpretations, matrices can be seen as linear transforma-
tions from one space to another: When a vector & € R" is pre-multiplied
by an m X n-matrix A, the result is another vector y € R™, mapped
to the n-dimensional image space of A. This space is spanned by the
column vectors of A.

The rank of A is the same as the dimension of the column space
or image. It is important to note that the rank can be lower than n,
because it could be that some columns are linearly dependent, meaning
that they can be constructed by linear combinations of other columns.
In that case, the columns cannot span an n-dimensional space.

H O Problem 0.10 What is the rank of an n x n identity matrix?

O Problem 0.11 What is the maximum rank that a 3 x 4-matrix can
have? Provide a reasoning for your answer.

There are some matrices with special structure, for example square
matrices, where m = n. Within this subgroup, there are for example
diagonal matrices, where all values except for those on the diagonal are
zero, or upper triangular matrices (also called right triangular matrices),
where all values below the diagonal are zero.

The transpose AT of an arbitrary matrix A is another matrix that
contains the columns of A as rows. For symmetric matrices, AT = A,
which means that all entries are mirror-symmetric with respect to the
diagonal.

H O Problem 0.12 Can non-square matrices be symmetric?

The trace of a square matrix is defined as the sum of all diagonal
elements of this matrix.

A critical characteristic of a square matrix A is its determinant |A]|.
The determinant is a scalar value and can be calculated and interpreted
as described in Chapter 3 of [4].

H O Problem 0.13 Calculate the determinant of a diagonal matrix.
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H O Problem 0.14 Calculate the determinant of an upper triangular ma-
trix.

O Problem 0.15 If you know the determinant of a matrix A, how can
you find the determinant of AT?

Using its determinant, one can also calculate the inverse of a square
matrix, as described in Sections 2 and 3 of [4]. When pre- or post-
multiplying a matrix A with its inverse A~!, one obtains the identity
matrix. However, not all square matrices can be inverted. Matrices
that have an inverse are called invertible or nonsingular matrices, while
those without an inverse are called singular matrices.

Consider a square matrix that has deficient rank, so where the rank
is lower than the number of columns. In that case, mapping a vector
to its counterpart y in the image space, via Ax = y means compressing
the original dimension of « to a lower dimensionality.

O Example 0.8 Consider a vector = (1, 2, 3)T in 3D that is mapped

1 0 0
onto a paper plane via pre-multiplication with a matrix A = [0 1 0
0 0 O

We notice that this matrix only has rank 2. So, even though it also has three
components, the vector y = Az = (1, 2, 0)T is merely a two-dimensional
“shadow” of the original vector . Now, if we try to reconstruct the original
vector from its shadow, we will not succeed, because there is an infinite
number of possible original vectors, for example (1, 2, 0)T or (1, 2, 325)T.
That means there cannot be a unique inverse A ™! such that one can be sure
that A~ly = x.

‘ O Problem 0.16 What can you say about the inverse of a matrix that
has a determinant of 07

For a matrix that has a rank lower than its number of columns, there
is always a set of vectors that must all map to the same image, namely
to the zero vector. The set of these vectors is called the nullspace or
kernel of a matrix.

@ Problem 0.17 What is the relationship between the number of columns
of a matrix, the dimension of its kernel, and the rank of the matrix?

O Problem 0.18 Use the MATLAB™ command null to calculate the
nullspace of the matrix A from Example 0.8. Does the result match your
expectations?

Advanced Mechanics WB2630 (C) Vallery /Schwab 2020 1(!U Delft



0 BACKGROUND KNOWLEDGE 15

Definiteness of a symmetric matrix is an important property that
can be employed for example for stability analysis. If a matrix A is
positive definite, it means that for any nonzero vector x, the scalar
xT Az is positive. If A is negative definite, the same scalar will be
always negative. Semi-definiteness extends to the case where T Az
may also be zero for some vectors x.

@ Problem 0.19 Consider the two-dimensional identity matrix. Can you
make a statement about its definiteness?

@ Problem 0.20 Consider a general two-dimensional diagonal matrix D
with only negative entries on the diagonal. Can you make a general statement
about the definiteness of such a matrix?

0.2.6 Eigenvectors and Eigenvalues

A vector a that does not change its direction when it is pre-multiplied
by a square matrix C (which is not the identity matrix) is called an
eigenvector of this matrix. The multiplication factor needed to repre-
sent the change in length is called the associated eigenvalue A:

Ca = Aa. (0.17)

If we are interested in finding an eigenvalue for a particular matrix, we
can re-write (0.17) as
(C—AE)a =0, (0.18)

where E is the identity matrix of the same dimension as C.

For example in R3, this equation system, together with for example
the condition that @ = a has unit length, provides four equations for
four unknowns: The components of @ and the scalar A.

If the matrix C has full rank, we will find as many independent
eigenvectors with nonzero eigenvalues as there are dimensions. Remark:
It is possible that some or all vectors are complex, in which case also
their associated eigenvalues are complex. These solutions always occur
in complex conjugate pairs. Algebra of complex numbers is not required
in the following; for more information, please consult Appendix H of [1]
or Appendix C of [2, 3].

A commonly employed method to solve the equation system is to first
establish the determinant of the matrix C — AE, which delivers the so-
called characteristic polynomial in A. Finding the n eigenvalues means
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finding the n roots of this n-degree polynomial. Afterwards, for each of
these roots, one finds the associated eigenvector from (0.18).

It is possible that some eigenvalues have a multiplicity larger than 1.
If the characteristic polynomial contains factors (p — A;)*, then k; is
called the algebraic multiplicity of the eigenvalue \;. Note that it could
be that there are less than k; eigenvectors associated with a particular
eigenvalue A;. In that case, the geometric multiplicity of that eigenvalue
is lower, in fact it equals the number of independent eigenvectors for
the particular eigenvalue. It will always be at least one.

Further useful properties of eigenvalues are that the determinant of a
matrix equals the product of all eigenvalues, and the trace of the matrix
equals the sum of all eigenvalues.

O Problem 0.21 Computing eigenvalues by hand can be much work.
However, checking if a vector is an eigenvector is usually quicker. Show that
1 1 2 3
1] is an eigenvector of |3 1 2
1 2 3 1

If all its eigenvalues are positive, a symmetric matrix is positive def-
inite. 1If eigenvalues are only non-negative (meaning some could be
zero), the matrix is positive semidefinite. In analogy, if all eigenvalues
are negative (nonpositive), a matrix is negative (semi-)definite.

H O Problem 0.22 Calculate the eigenvalues of a general diagonal matrix.

O Problem 0.23 Calculate the eigenvalues of a general upper triangular
matrix.

O Problem 0.24 Use the MATLAB™ command eig to calculate the
eigenvectors and eigenvalues of the matrices given in Example 0.8 and in
Problem 0.21. Do the results match your expectations?

0.3 Differentiation and Integration

0.3.1 Derivatives with Respect to Time

Many variables that describe mechanical systems (such as distances or
angles) change over time and so are time-dependent.

To denote an infinitesimally small change in a variable, we use the
operator d. For example, an infinitesimal increment in the vector r
would be denoted as dr.
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To represent the rate of change of a quantity with respect to time, one
calculates the quotient of this infinitesimal increment and an increment
in time dt¢, which is the derivative with respect to time. To denote the
derivative of a vector r or a scalar r with respect to time ¢, we use the
abbreviated notations:

dr r(t+ At) —r(t dr r(t+ At) —r(t
=— = lim (t+ A2 (),andi“:—:lim (t+ A1) ()7

dt  At—0 At dt At—0 At
(0.19)

respectively. Note that the time derivative of constants, so quantities
that do not vary over time, is zero.

0.3.2 Product Rule

The product rule of differentiation is used when an expression contains
a multiplication of several functions. To take a derivative of the scalar
function h(t) = f(t) - g(t) with respect to time, one can apply the
following:

. dn d df () dg(t)

=S = 3 F0ee) = L2+ 1022 (020)

O Problem 0.25 Take the time derivative of h(t) = t* by rewriting h as
h(t) = f(t)g(t), where f(t) = g(t) =t and applying the product rule.

O Problem 0.26 Take the time derivative of h(t) = t3 by rewriting h as
h(t) = f(t)g(t), where f(t) =t2, g(t) =t and applying the product rule.

@ Problem 0.27 Show (0.20) from the definition of the time derivative
in (0.19).

For the scalar product of two vector functions, so hi(t) = f(t)Tg(t),
the rule can equally be applied:

= = (7)) = FO) 9 + SO0 (0:21)
as well as for the cross product ho(t) = f(t) x g(t):

_dhy  d

ho = 2= = (F(1) x 9(0) = F(t) x g(0) + £(6) x 9(6)  (022)
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@ Problem 0.28 Use the product rule of differentiation to show that
[#Trdt = LT

@ Problem 0.29 Use the scalar formulation (0.20) of the product rule
of differentiation, in combination with the definitions of scalar and cross
product, to prove (0.21) and (0.22).

0.3.3 Chain Rule

The chain rule is used when the expression is the nested composition
of two or more functions. To calculate the time derivative of a single
nested function h(g(t)), the chain rule yields:

rule.

. dnd _ dhdyg

h= G = 5 o)) = 5 (0.23)

O Problem 0.30 Calculate the time derivative & of h = sin (6) for which
you know that 6 is time-dependent, using the chain rule.

@ Problem 0.31 Calculate the time derivative of h = 30 sin () for which
you know that # is time-dependent, using both the product rule and the chain

For a more deeply nested function, the chain rule expands to:

4.

1.

2.

. dhd _dh dg; dg2 dgs3

h = T Q@ (h(g1(g92(g3(1))))) = dg1 dga dgs dt (0.24)

@ Example 0.9 To calculate h= % <ecos (m)>, we decompose h as
a function of g7 first. That is:
1.
2.
3.

h(g1) = e . In its turn, ¢; is a function of go. That is
91(g2) = cos (g2). Then, go is a function of g3, namely

92(93) = y/g3. Finally, we realise that g3 is the time-dependent vari-
able:

gs(t) = z(t).
Now we can do the separate derivations:
dh(g1) _
3 ="
d .
o) = —sin (g2)
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3 dg2(9g3) — 1

© dgs 2\/g93
dgs(t) _

4. B2 =i

This way we find

e’ (m) sin ( x(t))
24/ x(t)

h=— (0.25)

H @ Problem 0.32 Calculate h = & (cos (z(t)?)).

@ Problem 0.33 Show (0.23) from the definition of the time derivative
in (0.19).

@ Problem 0.34 Use the Symbolic Toolbox in MATLAB™ to calculate
% from Example 0.9 and from Problem 0.32 and compare the results with
your manual calculations.

0.3.4 Partial Derivatives

Now, we consider a function f that depends on multiple variables. A
partial derivative of a function f is the derivative of this function with
respect to a single variable. Taking a partial derivative, one is only
interested in the influence of the variation of one of the variables on f,
while all the other variables are held constant.

O Example 0.10 The elevation at a particular location in a mountain
landscape can be given as a function of two variables: latitude and longitude.
We could be interested in the influence of the variation of latitude, while the
longitude is kept constant. To obtain this information, we calculate the
partial derivative of elevation with respect to latitude. This provides the
slope of the landscape in the requested direction.

So, a partial derivative represents the dependency of an expression on
an isolated variable. The partial derivative of a function f with respect

to a variable z is denoted by %.

O Example 0.11

0
2 (az® 4 3yz + ci®) = 2az + 3y (0.26)
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O Example 0.12
0 2 .92 .
PR (ax® + 3yx + ci®) = 2ci: (0.27)
O Example 0.13
9 2 2
Ew (az® + 3yx + ci®) = 3z (0.28)
Y

We can use partial derivatives to calculate increments of a function
f that depends on multiple variables x;, with ¢ = 1...V:

N
df=>" g—idwi. (0.29)
=1

O Example 0.14 Consider a particle moving in three-dimensional space,
within a temperature field. The particle’s coordinates x, y, and z determine
the temperature f(z, y, z). We find the infinitesimal temperature increment
df that is due to changes in x, in y, and in z as:

of f 3f
apdr+ g+ 5 0 (0.30)

df =
O Example 0.15 In Example 0.10 about the mountain landscape, the
elevation f is only a function of two variables, namely latitude z; and longi-
tude z2. The relationship (0.29) indicates how much elevation df is gained
as a function of infinitesimal changes in latitude dz; and longitude dxs.

In case the x; are all functions of time ¢, we find the total derivative
of a function f(x1(t), x2(t), ..., zn(t)) with respect to time as:

of dx;
Z o dl (0.31)

@ Problem 0.35 Consider a function f(x(¢), y(t)) with
f =322 + 5y, z = bt, y =t (0.32)
Find f in two ways: a) by substituting the functions for x and y into f, such

that it becomes a function of time only, and then taking its derivative, and
b) by using (0.31). You should obtain the same result.
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0.3.5 Gradient

For a function f that depends on multiple variables, for example z, vy,
and z, the partial derivatives of f in all directions, so in the example
respectively in x, y and z direction, can be subsumed in a vector, the

gradient of f:
of
ox

Vf:= g_g (0.33)

of

0z
The symbol V is called the nabla operator; it produces the gradient of
a scalar function, like here of f(x, y, z). At any specific location, this
vector points in the direction of the steepest ascent.

A gradient of a function will always be orthogonal to the level curves

(often also denoted iso lines) or level surfaces of this function, which
denotes the manifolds along which the function does not change its
value.
O Example 0.16 Figure 0.7 shows two 2D examples, namely the gradient
of two functions f(z, y) that each specify saturation for a given location.
Note how the vectors indicating the gradient are always perpendicular to
the iso lines, which in the examples are circles (left) and straight vertical
lines (right).

Figure 0.7: A visualization of two gradient fields (Adapted and re-drawn from [7]).
The arrows represent the gradient of change in saturation. They point
in the direction of the greatest change in saturation at their specific
location.

@ Problem 0.36 Show that the gradient of a function f(z,y) of two
variables x and y at any particular point is orthogonal to the function’s level
curve through that point.

Hint: In order to show this, do the following: Consider an infinitesimal
vector that points in a direction that is tangential to the level curve and has
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the components (dz dy)™. Now, express the infinitesimal increment df of f
along the level curve, using (0.29), as a function of the individual increments
dz and dy. Notice that this increment should be zero in the direction of the
curve. Then, re-write df as a scalar product of two vectors. What can you
say about these two vectors?

0.3.6 Integration

For single and multiple integrals, please consult for example Chapter
5 of [1], which explains line, surface, and volume integrals in Sections
16.2, 16.7, and 6.2-6.3, respectively. Pay particular attention to the
limits of the integrals, they might be functions of other variables.

@ Problem 0.37 Use volume integrals to calculate centroids of volume of
several common bodies, such as a cone, a solid hemisphere, and a thin-walled
hollow cone.

0.4 Basic Definitions and Tools Used in Mechanics

Readers are expected to have already knowledge on the branch of me-
chanics that is called Statics. This branch deals with mechanical sys-
tems that are at rest or move with constant linear velocity. It defines
conditions for forces and moments acting on or within these systems
such that indeed the systems remain in this state. Statics and other
branches of mechanics share many important definitions and tools. In
this section, some of these critical concepts will be reviewed.

0.4.1 Moments

The moment, often also called torque', of a force F with respect to
point P is defined as:
Mp :=rypxF, (0.34)

where the vector r4/p is a vector from point P to point A, the point
of application of the force. Note that from the definition of the cross
product, it follows that A may in fact be any arbitrary point on the line
of action of F' (see Problem 0.39). Also note that the order in which
this cross product is written matters, as F' x r4/p = —Mp.

'The term torque is preferably used for a torsional moment, so a moment about
a longitudinal axis. A specific example is the torque that a motor applies to a
shaft.
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@ Problem 0.38 Calculate the moment about point P using (0.34), for
force F' = (3, 4, 0)T N, if the position vector of the point of application of
this force, A, with respect to point P is 74,p = (2, 3, 0)T m. Note that both
vectors are contained in the XY-plane to check direction of the resulting
moment vector. Also, choose another point A’ on the line of action of the
force to calculate the moment and compare results.

@ Problem 0.39 Use the definition of the cross product to show that
when calculating the moment vector M p of a force vector F' about point P
according to (0.34), it does not matter which vector 4,p you choose from
point P to the line of action of the force.

Hint: There are multiple ways to show this. Try these two: a) Draw the
parallelogram spanned by position and force vector and show that neither
the magnitude nor the direction of the cross product changes when the force
shifts along its line of action. Use (0.6) and the right-hand rule. b) Describe
the location of all points on the line of action of a force as a linear combination
of a position and a direction vector. Then, calculate the cross product of such
an arbitrary point with the force vector.

If two force vectors act on a system and if these two forces have
parallel lines of action, equal magnitude, but opposite direction, then
the sum of these two forces (also called a force couple) is the zero vector.
However, they still cause a moment vector. This couple moment vector
is identical regardless of the point of reference P, such that it is a free
vector. This means its effect on the rigid body does not depend on its
location.

0.4.2 Force System Resultants: Equipollence

When several forces and moments act on a rigid body, it is always
possible to formulate an equivalent system that consists of 1) one single
resultant force vector acting at an arbitrary point O and 2) one couple
moment vector. Equivalence, or more precisely equipollence, means that
the effect of the original and of the reduced force/moment system on
the rigid body is identical. This requirement leads to the following steps
of determining the resultant system:

1. To determine the magnitude and direction of the resultant force
F,., all N original force vectors F'; need to be summed.

N
F.=) Fi (0.35)
=1
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2. To determine the associated couple moment vector M., the mo-
ment caused by the N original forces and K original moments about
the same point O needs to be determined:

K N
M,=> M;+> rxF (0.36)
j=1 i=1

where the r; are the position vectors of the points of application of
the N original forces with respect to point O. Note that the equation
already considers the fact that the resultant force vector does not create
a moment about point O, its chosen point of application.

Remark: Simplifying even further, it is also always possible to find
an equivalent system that contains only one single force vector and a
single couple moment vector that is parallel to the force vector’s line of
action. The exact location of this line of action needs to be determined.

@ Problem 0.40 For an original system of N forces F';, i =1...N, set
up an algorithm (set of equations) that allows determining the resultant force
vector, one point on its line of action, and a resultant couple moment vector
that is parallel to this line of action.

Hint: Remember that the resultant force vector already determines the
direction of the possible couple moment. Therefore, express the couple mo-
ment vector as a product of its magnitude and direction, which contains only
one scalar unknown. In order to determine the exact location of the line of
action of this force as well as the magnitude of the couple moment, recall that
the moment of all original forces and moments about any arbitrary point O
needs to be identical to the moment of the resultant force and the couple
moment vector. Remember that any point on the line of action of the force
is a possible point of application. So, you could choose a position vector that
is perpendicular to the line of action and only has unknown length. Test
your approach for an example system and verify that the resultant system is
indeed equipollent.

0.4.3 Newton’s First Law and Static Equilibrium

In 1687, Newton stated his three laws of motion [8]. The first law reads:

1. “Bvery body perseveres in its state of rest, or of uniform motion
in a right line, unless it is compelled to change that state by forces
impressed thereon.”

So, a particle that moves at constant linear velocity v will keep the
same velocity unless a force F' acts upon it. Note that a particle
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at rest has a constant velocity of zero.
Y F=049=0. (0.37)

Based on this law, static equilibrium of a rigid body was defined as a
state where the sum of all forces acting on the system is zero and also
the sum of all moments acting on the body about any arbitrary point
O is zero.

Remark: Note that the term equilibrium does not necessarily imply
stable equilibrium. For example, a ball in a convex valley resides in
a stable equilibrium, while the same ball balancing on top of a con-
cave mountain peak is in an unstable equilibrium. Stability can be
investigated by analyzing the system’s response to infinitesimally small
perturbation from its state of rest.

0.4.4 Center of Mass

The position vector r¢ from an origin O to the overall center of mass
of a system composed of N particles having masses m; is defined by:

N
ro = S5, (0.38)

where 7; is the position vector of the center of mass of the i-th particle
with respect to the same origin O.

When calculating the center of mass for a single body, the summation
is turned into an integral:

S PAT

= (0.39)

o
where p is the position vector of an infinitesimally small volume element
inside the body of mass dm. The integral resolves to a triple integral
for the case of three-dimensional bodies.

In order to calculate the center of mass for a composite body where
the mass and center of mass of each individual element are known,
(0.38) can again be used. When dealing with hollow sections in systems
with homogeneous mass distribution, the calculation can be simplified
by considering first a solid structure and then considering each hollow
section as a body with negative mass.

Note that the centroid, the center of mass, and the center of gravity
(point of application of the resultant gravitational force) may all be
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different points. This is the case if mass distribution is not homogeneous
and/or if the gravitational field is not homogeneous.

O Example 0.17 Consider three particles of masses my, mo and mg, at
locations with position vectors r1, ro and r3. The values are given as:

m1 = 2kg, my = 3kg, ms = bkg, and
=0 10 1) mro=(-10 0 6) mrs=(2 0 4)" m.

Their combined center of mass is given by:

1 5 -10 2
=——— | 2kg | 10 3k 0 5kg | 0
re (2+3+5)kg & mtokg m+okg m

1 6 4
-1
= 2 m.

@ Problem 0.41 Use integration to calculate the center of mass of several
common bodies, such as a cone, a solid hemisphere, and a thin-walled hollow
cone. Assume homogeneous mass distribution.

@ Problem 0.42

Consider the thin-walled cylindrical rotor depicted in Figure 0.8, of mass
m and radius R. The center of mass of the rotor has the position vector
rp=R- (55, 55, 25) " in zyz.

Figure 0.8: Unbalanced rotor.

As the center of mass of the rotor is not on the z-axis, the rotor is said to
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be in static unbalance, which can cause undesired vibrations when in motion.

A weight of mass m, is to be added to the rotor at a strategic place on
the shell of the rotor A, described by the angle ¢ and the distance d. The
weight should compensate for static unbalance, such that the center of mass
of the combined body (rotor plus mass m,), with position vector r¢, is on
the x-axis. The weight is considered a point mass that is rigidly attached to
the rotor.

This is done so that the bearings P; and P, do not have to support any
net force due to rotation of the rotor.

Determine m, and one possible location A to compensate for static un-
balance of the rotor. In your response, provide mg, p, and d as functions
of R and m (Remark: None of these terms has to necessarily appear in the
requested functions).

0.4.5 Newton’s Third Law of Motion
Newton’s third law of motion [8] states:

3. “To every action there is always opposed an equal reaction: or the
mutual actions of two bodies upon each other are always equal,
and directed to contrary parts.”

So, if one object A exerts a force F' 4 on a second object B, then
B simultaneously exerts a force F'g on A, and the two forces are

equal and opposite:
Fy=—-Fgp (0.40)

The forces share the same line of action. Philosophically speaking:
“A force is never alone”; the action-reaction forces form a unit,
the force pair.

0.4.6 Internal and External Forces

Two types of forces are distinguished which act on a particle that is
part of a system of N particles: external forces F'; and internal forces
Jij» such that the sum of all forces acting on a particle is:

N
Fi+> fi (0.41)
j=1

The external force vector F'; is defined as the sum of all forces that
act on particle ¢ by sources outside the system.

Internal forces f;; are the forces that act between particles in a sys-
tem. For example, if a spring interconnects two particles in one system,
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then the spring force is called an internal force. The subscript ij means
“acting on particle i, exerted by particle j7. Note that f;; = 0 for
i = j. According to Newton’s third law (0.40), there must be an equal
and opposite reaction exerted on particle j, namely

Fji=—Fi (0.42)

Therefore, when summed over the entire system of particles, the sum
of all these internal forces is zero:

N N
S fii=o0. (0.43)

i=1 j=1

Note that the interpretation of a force as being internal or external
depends on the chosen definition of system boundaries. We tend to see
gravity as an external force, because we consider Earth just in terms
of providing us with an inertial coordinate system, but not as being
part of our mechanical system. In case we do consider Earth as part
of the system (for example simplified as another particle), then gravity
suddenly becomes an internal force. This demonstrates that the idea of
internal and external is simply a matter of system definition.

0.4.7 Free-Body Diagrams

A Free-Body Diagram (FBD) is useful to understand and visualize a
problem and is used to define the system boundaries and personal con-
ventions. It is a simplified drawing of (a part of) a mechanical system
with all forces, moments and dimensions. The name is slightly mislead-
ing, as FBDs cannot only be drawn for single rigid bodies. They can
also be established for parts of bodies or for systems of bodies or parti-
cles. Choosing appropriate system boundaries is a critical step towards
solving any problem.
These are the steps to draw a FBD:

1. Draw the system in a free state, i.e. “cut” the system at conve-
nient locations and draw outlined shapes of the separate pieces.
Note that each cut will introduce new external (formerly internal)
action-reaction forces at the system boundaries.

Some helpful guidelines:

a) Always draw the system in a generic state. So for example
if you draw the Free-Body Diagram of a pendulum, draw it
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with a generic angle, and not in upright or downright posi-
tion, as those are special cases.

b) Whenever possible, choose your system boundaries such that
you expose only action-reaction forces that you are actually
interested in calculating. Otherwise, extra equations and un-
knowns are introduced, needlessly complicating the solution
process.

2. Establish a coordinate system, choose it smart. That is, choose
a convenient position for the origin and look if rotating and/or
translating the coordinate system can make things easier.

3. Indicate all known and unknown external forces and moments
that act on the body on the right locations (e.g. external loads,
support reactions, weight). Some rules:

a) Do not show internal forces or moments.

b) If a connection prevents movement of the body in a particular
direction, then forces/moments are drawn in that direction,
see Figure 0.9a and Figure 0.9b.

c) If a segment is split in two, the forces acting on the two
segments in the separated FBDs are equal in magnitude and
opposite in direction.

d) Forces acting on a rigid body may be shifted along their lines
of action (sliding vectors), see Figure 0.9c.

e) Moments acting on a rigid body may be placed anywhere
(free vectors), see Figure 0.9c.

4. Label all forces and moments with unique names.

5. Draw all necessary dimensions to calculate moments, i.e. dis-
tances and angles.

Make sure that the FBD has all relevant information of the original
drawing. Once the FBD is finished, one should not need too look into
the original problem drawing anymore to establish the sums of forces
and moments.

A very frequent mistake when drawing FBDs for dynamical systems
is to already consider the specific movement the system performs. For
example, if a particle rotates about one axis, one may be tempted to
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F,T\

(a) For a simple pendulum, (b) For a clamped beam, the (c) Force vectors may be

W

‘\\

l
A=

the support is replaced supporting wall is re- shifted along their lines

by forces transmitted by placed by the forces and of action and moment

a hinge joint. moment exerted by the vectors are free vectors.
wall.

Figure 0.9: Examples for drawing components of FBDs (notice that these are NOT
complete FBDs)

draw a force in radial direction based on previous knowledge on dy-
namics and the intuition that there must be a radial force sustaining
this rotation. This is a critical mistake, as it defies the purpose of a
FBD, reducing it to a confirmation of one’s own intuition. Such a proce-
dure exposes any subsequent calculation to critical omissions. Instead,
a FBD must contain all the possible reaction forces generated at the
system boundaries, only based on the nature of the connection, and
disregarding any information that is given on the system’s movement.
Consequently, an FBD drawn to determine static equilibrium looks in

fact identical to one intended to derive a system’s equations of motion.

Another very frequent mistake when drawing FBDs is to make un-
conscious assumptions, for example about the point of application of a
distributed load. Whenever the point of application is unclear, variables
must be introduced to parameterize its location.

O Example 0.18 A Free-Body Diagram for a homogeneous block that
slides down a slope (left of Figure 0.10) is depicted on the right of Figure 0.10.
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L
J/J \\ N ¢ /J
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/ < V4 h

Figure 0.10: Sliding block and corresponding Free-Body Diagram

The friction force F;y and normal force IV are resultants of shear stress and
pressure distributions, respectively. While the resultant friction force F
can be placed anywhere along the slope, which equals its line of action,
the resultant normal force N has a point of application somewhere at a
distance b from the block’s center of mass. A common mistake is to make
the assumption that b is zero, which is only certain if the dimensions of the
block are negligible.

O Problem 0.43 Use the FBD in Figure 0.10 to determine the signs of
b and of F in the case of static equilibrium.

Hint: Note that in that case, the block reduces to a so-called “three-force
member”, a body with only three forces acting on it.

@ Example 0.19 Consider the cone depicted in Figure 0.11. The cone

has mass m and uniform density p. Its radius R and height v/3R impose a
constant angle of & rad between the cone’s contact line with the ground and
its central axis. The center of mass C of the cone is located at 1/4 of the
height from its circular base.

The figure indicates an inertial XY Z coordinate system , and a rotating
coordinate system z'y’z’. The y'-direction is always aligned with the cone’s
contact line with the ground, and 2z’ is always vertical.

The cone rolls (possibly with slipping) on the XY -plane, and its tip always
remains in the origin O. It is subjected to gravity with field strength g in

the negative Z-direction.
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Figure 0.11: Cone

Draw a Free-Body Diagram (FBD) of the cone projected onto the y'z'-
plane. Show distributed loads only by their resultant, and leave out all
components of these reactions which are zero.

Ezxemplary solution

A possible FBD for the cone is shown in Figure 0.12.

One may ask why it contains a moment component about the z’-axis,
but not about the other axes. To understand this, one has to consider the
type of constraint and use equipollence, as treated in statics and reviewed in
Section 0.4.2: The resultant vertical ground reaction force F,/, representing
the centroid of the distributed load acting on the cone, has been drawn at a
(yet unknown) distance a from the origin O. This way, there is no additional
constraint moment about the x’-axis to be considered. Alternatively, using
equipollence one could draw this resultant force acting in the origin, in which
case an additional moment component about the z’-axis would appear. A
case with the occurrence of a couple moment component about the z’-axis
without any resultant vertical force is impossible given the unilateral contact.
Drawing the force at the unknown distance a and solving for a has a clear
advantage for results checking: A value for a being negative or larger than
2R would be implausible, because the resultant ground reaction force can
only be applied within the base of support of the cone.

A similar relationship holds for the force component in z’-direction and the
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moment about the z’-axis, although here it is possible that a pure (friction)
couple moment can be transmitted without any resultant force F,/ being
present. The resulting redundancy would need to be resolved for a given
situation by an additional condition during the calculations. For example,
by stating that the couple moment about the z’-axis is only considered in
case Fy. resolves to be zero, or by forcing b to be zero.

About the y’-axis, no moment can be transmitted as none of the potential
distributed loads in the line contact has any lever arm.

Figure 0.12: Exemplary FBD for the rolling cone.

@ Problem 0.44 Consider again Example 0.19, but now the cone is at
rest. Use static equilibrium in that case to calculate the distance a between
the cone’s tip and the resultant vertical ground reaction force.
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